

Security Audit Report
Yala​

February 2025

V202411

https://www.coinfabrik.com

 Security Audit Report: Yala

Executive Summary​ 3
Scope​ 3
Findings​ 4

Critical Severity Issues​ 4
CR-01 Can Unstake After Transferring Away​ 4
CR-02 Yeti NFT Freeze​ 5

High Severity Issues​ 6
Medium Severity Issues​ 6
Low Severity Issues​ 6

LO-01 No URI for NFTs​ 6
LO-02 Single NFT Staking Bypass​ 7
LO-03 Floating Pragma on core​ 7

Enhancements​ 8
EN-01 No Limits or Rewards in Stake Contract​ 8
EN-02 Import Ownable2Step​ 9
EN-03 Simplify NFT Eligibility​ 9

Other Considerations​ 10
Upgrades​ 10
Privileged Roles​ 10

Yetiasd​ 11
Stake​ 11

About CoinFabrik​ 11
Methodology​ 11
Severity Classification​ 12
Issue Status​ 14
Disclaimer​ 14
Changelog​ 15

Page 2 of 15

 Security Audit Report: Yala

Executive Summary

CoinFabrik was asked to audit the contracts for the Yala project.

This report, as requested by the client, only includes some files in the yala-contract-core

repository.

During the initial phase of this audit we found one critical issue and several low issues. Also,

several enhancements were proposed. Of those issues, the critical one and one of the low ones

were resolved. The rest is still unresolved. None of the enhancement proposals were

implemented.

A new critical issue was introduced during the fixes of the initial issues.

In a second fixes revision, another critical issue was resolved and one enhancement was

implemented. Two low severity issues were acknowledged.

Scope

While the original audit had a broader scope, this report only includes the following files in the

https://github.com/yalaorg/yala-contract-core repository:

●​ contracts/NFT/YetiNFT.sol: it contains the Yetiasd contract, an ERC721 token with 1

facilities to give tokens away.

●​ contracts/NFT/stake.sol: It contains the Stake contract, it implements an ERC721

token that represents a staked NFT.

The audit was conducted on commit 00f262174f7bc81ac2218cc12f80a878a2b1ada9. Fixes were

checked on commit 3f351d1ee4376cd52a6ebb676be25be677742f3f. Last round of fixes checked

on commit 41914529c8a2ce7336cbdf460af10c13acfe6a34.

No other files in this repository were audited. Its dependencies are assumed to work according

to their documentation. Also, no tests were reviewed for this audit.

1 The YetiAsd contract was renamed as Yeti for commit
3f351d1ee4376cd52a6ebb676be25be677742f3f.

Page 3 of 15

https://github.com/yalaorg/yala-contract-core

 Security Audit Report: Yala

Findings

In the following table we summarize the security issues we found in this audit. The severity

classification criteria and the status meaning are explained below. This table does not include

the enhancements we suggest to implement, which are described in a specific section after the

security issues.

Each severity label is detailed in the Severity Classification section. Additionally, the statuses are

explained in the Issues Status section.

Id Title Severity Status

CR-01 Can Unstake After Transferring Away ❚ Critical Resolved

CR-02 Yeti NFT Freeze ❚ Critical Resolved

LO-01 No URI for NFTs ❚ Low Resolved

LO-02 Single NFT Staking Bypass ❚ Low Acknowledged

LO-03 Floating Pragma on core ❚ Low Acknowledged

Critical Severity Issues

CR-01 Can Unstake After Transferring Away

Location

●​ contracts/NFT/stake.sol

Found on Commit

●​ 00f262174f7bc81ac2218cc12f80a878a2b1ada9

Classification

●​ CWE-863: Incorrect Authorization 2

2 https://cwe.mitre.org/data/definitions/863.html

Page 4 of 15

https://cwe.mitre.org/data/definitions/863.html

 Security Audit Report: Yala

Description

If a user makes a stake in the Stake contract via the stake function and then transfers the

resulting NFT away, they still can unstake this NFT and obtain the underlying staked NFT.

The recipient of the transferred staking NFT cannot unstake it, making the generated staking NFT

effectively useless.

Recommendation

Either allow the owner, and only the owner, of the staking NFT to unstake it or make the Stake

contract to not be a NFT contract.

Status

Resolved. The Stake contract is not an ERC721 token anymore. Checked on commit

3f351d1ee4376cd52a6ebb676be25be677742f3f.

CR-02 Yeti NFT Freeze

Location

●​ contracts/NFT/YetiNFT.sol: 16, 82-88, 113-118, 123-127

Found on Commit

●​ 3f351d1ee4376cd52a6ebb676be25be677742f3f

Description

The mapping OWNEDNFTS of the Yeti contract contains an array that increases in length for each

NFT that is transferred to a user or minted to it. The array is then iterated each time the burn

function is executed or when the _beforeTokenTransfer private function is executed, that is

invoked in both safeTransferFrom functions and the transferFrom function.

So, when a new NFT is awarded to a user it increases the gas cost to do transfers and burns and

if the number of NFTs of a single user is high enough the gas cost may exceed the maximum

allowed for a transactions, effectively making the user unable to burn its tokens, transfer them

away or both.

Page 5 of 15

 Security Audit Report: Yala

Recommendation

In order to implement the functionality of the Yeti contract there is no need to store an array of

NFT ids for each user and iterate it. Use just mappings instead.

Status

Resolved. The custom implementation was replaced by OpenZeppelin’s ERC721Enumerable,

which implements a mapping instead of an array.

High Severity Issues

No issues found.

Medium Severity Issues

No issues found.

Low Severity Issues

LO-01 No URI for NFTs

Location

●​ contracts/NFT/YetiNFT.sol:27

●​ contracts/NFT/stake.sol:40

Found on Commit

●​ 00f262174f7bc81ac2218cc12f80a878a2b1ada9

Description

In the Yetiasd contract, the base URI is defined as "", and in the Stake contract it is defined as

"adjsjfhdjfhs" . Neither generates a valid and absolute URI for the NFTs. This may lead to 3

problems when showing those NFTs in marketplaces.

Recommendation

Use a proper base URI for all the implemented NFTs.

3 This is the actual string in the codebase.

Page 6 of 15

 Security Audit Report: Yala

Status

Resolved. The Yeti contract now has "https://assets.yala.org/json/" as the base URI and 4

the Stake contract is not an ERC721 token anymore. Checked on commit

3f351d1ee4376cd52a6ebb676be25be677742f3f.

LO-02 Single NFT Staking Bypass

Location

●​ contracts/NFT/stake.sol:21

Found on Commit

●​ 00f262174f7bc81ac2218cc12f80a878a2b1ada9

Description

The stake function of the Stake contract checks that the invoking account does not have a

staked NFT. But this check is not effective because making new accounts is trivial in EVM

blockchains, allowing any user to have as many accounts as they want. This allows any user to

stake as many NFTs as they choose.

Recommendation

Allow any account to have many staked NFTs.

Status

Acknowledged. The development team stated this is a design decision.

LO-03 Floating Pragma on core

Found on Commit

●​ 00f262174f7bc81ac2218cc12f80a878a2b1ada9

Location

●​ contracts/NFT/stake.sol:2

●​ contracts/NFT/YetiNFT.sol:2

4 YetiAsd in the initial commit.

Page 7 of 15

 Security Audit Report: Yala

Description

Contracts should be deployed with the same compiler version that they have been thoroughly

tested with, and kept up to date with the latest releases of solidity. Locking the pragma helps to

ensure that contracts do not accidentally get deployed using, for example, an outdated compiler

version that might introduce bugs that negatively affect the contract system.

Recommendation

Lock the pragma version, replacing the pragma solidity statements that allow for multiple

solidity compilers to be used with a specific patch, preferring the most updated version. For

example, pragma solidity 0.8.28. Also it is required to thoroughly test all the changed

contracts not to introduce additional bugs.

Status

Acknowledged. The development team stated they will make sure it is compiled with the same

version.

Enhancements

These items do not represent a security risk. They are best practices that we suggest

implementing.

Id Title Status

EN-01 No Limits or Rewards in Stake Contract Not implemented

EN-02 Import Ownable2Step Implemented

EN-03 Simplify NFT Eligibility Not implemented

EN-01 No Limits or Rewards in Stake Contract

Location

●​ contracts/NFT/stake.sol

Found on Commit

●​ 00f262174f7bc81ac2218cc12f80a878a2b1ada9

Page 8 of 15

 Security Audit Report: Yala

Description

The staking mechanism implemented in the Stake contract does not have any rewards for

staking the NFT nor any limitations on when the NFT can be unstaken.

Recommendation

Add some reasonable limitations and rewards to make the staking useful.

Status

Not implemented.

EN-02 Import Ownable2Step

Location
●​ contracts/NFT/YetiNFT.sol

Found on Commit

●​ 00f262174f7bc81ac2218cc12f80a878a2b1ada9

Description

The YetiAsd contract includes a custom two-step process for transferring ownership. The

token's implementation could be simplified by incorporating OpenZeppelin's Ownable2Step and

leveraging its functionality through inheritance.

Recommendation

Use Ownable2Step instead of reimplementing it.

Status

Implemented. Checked on commit 41914529c8a2ce7336cbdf460af10c13acfe6a34.

EN-03 Simplify NFT Eligibility

Location
●​ contracts/NFT/YetiNFT.sol

Page 9 of 15

 Security Audit Report: Yala

Found on Commit

●​ 00f262174f7bc81ac2218cc12f80a878a2b1ada9

Description

Currently, the setEligible function manages user eligibility through an ELIGIBLE mapping,

which flags users who can claim NFTs. This design involves additional storage operations,

consuming more gas when updating mappings for each eligible user and requiring explicit

eligibility management through two separate mappings – ELIGIBLE and NFT.

By incorporating a zero-value token ID check directly within the setEligible function, the

contract can simplify eligibility management by relying solely on the NFT mapping. If NFT[user]

returns a non-zero token ID, the user is deemed eligible to claim their NFT.

Recommendation

Add a zero-check to the setEligible function and remove the ELIGIBLE mapping.

Status

Not implemented.

Other Considerations

The considerations stated in this section are not right or wrong. We do not suggest any action to

fix them. But we consider that they may be of interest to other stakeholders of the project,

including users of the audited contracts, token holders or project investors.

Upgrades

There are no mechanisms to upgrade in the analyzed contracts.

Privileged Roles

These are the privileged roles that we identified on each of the audited contracts that are not

taken from the MakerDAO project.

Page 10 of 15

 Security Audit Report: Yala

Yetiasd

Owner

The owner of the contract can:

1.​ add users that can claim NFTs via the setEligible function.

2.​ mint expired NFTs to itself via the recycleNFT function.

3.​ nominate a new owner via the nominateNewOwnership function. In order to effectively

have a new owner, the nominated account must accept the ownership by calling the

acceptOwnership function.

The initial owner of the contract is the deployer of the contract.

Stake

There are no privileged roles in this contract.

About CoinFabrik
CoinFabrik is a research and development company specialized in Web3, with a strong

background in cybersecurity. Founded in 2014, we have worked on over 500 decentralization

projects, including EVM-based and other platforms like Solana, Algorand, and Polkadot. Beyond

development, we offer security audits through a dedicated in-house team of senior cybersecurity

professionals, working on code in languages such as Substrate, Solidity, Clarity, Rust, TEAL, and

Stellar Soroban.

Our team has an academic background in computer science, software engineering, and

mathematics, with accomplishments including academic publications, patents turned into

products, and conference presentations. We actively research in collaboration with universities

worldwide, such as Cornell, UCLA, and École Polytechnique in Paris, and maintain an ongoing

collaboration on knowledge transfer and open-source projects with the University of Buenos

Aires, Argentina. Our management and people experience team has extensive expertise in the

field.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the

expected behavior, and general documentation about the project. Our auditors spent twelve

weeks auditing the source code provided, which includes understanding the context of use,

analyzing the boundaries of the expected behavior of each contract and function, understanding

Page 11 of 15

https://www.coinfabrik.com

 Security Audit Report: Yala

the implementation by the development team (including dependencies beyond the scope to be

audited) and identifying possible situations in which the code allows the caller to reach a state

that exposes some vulnerability. Without being limited to them, the audit process included the

following analyses.

●​ Arithmetic errors

●​ Outdated version of Solidity compiler

●​ Race conditions

●​ Reentrancy attacks

●​ Misuse of block timestamps

●​ Denial of service attacks

●​ Excessive gas usage

●​ Missing or misused function qualifiers

●​ Needlessly complex code and contract interactions

●​ Poor or nonexistent error handling

●​ Insufficient validation of the input parameters

●​ Incorrect handling of cryptographic signatures

●​ Centralization and upgradeability​

Fixes were checked on the scope that was reduced by the client.

Severity Classification
Security risks are classified as follows : 5

5 This classification is based on the smart contract Immunefi severity classification system
version 2.3. https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

Page 12 of 15

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

 Security Audit Report: Yala

Page 13 of 15

❚ Critical

●​ Manipulation of governance voting result deviating from voted
outcome and resulting in a direct change from intended effect of
original results

●​ Direct theft of any user funds, whether at-rest or in-motion, other than
unclaimed yield

●​ Direct theft of any user NFTs, whether at-rest or in-motion, other than
unclaimed royalties

●​ Permanent freezing of funds

●​ Permanent freezing of NFTs

●​ Unauthorized minting of NFTs

●​ Predictable or manipulable RNG that results in abuse of the principal
or NFT

●​ Unintended alteration of what the NFT represents (e.g. token URI,
payload, artistic content)

●​ Protocol insolvency

❚ High

●​ Theft of unclaimed yield

●​ Theft of unclaimed royalties

●​ Permanent freezing of unclaimed yield

●​ Permanent freezing of unclaimed royalties

●​ Temporary freezing of funds

●​ Temporary freezing NFTs

❚ Medium

●​ Smart contract unable to operate due to lack of token funds

●​ Block stuffing

●​ Griefing (e.g. no profit motive for an attacker, but damage to the users
or the protocol)

●​ Theft of gas

●​ Unbounded gas consumption

●​ Security best practices not followed

 Security Audit Report: Yala

Issue Status
An issue detected by this audit has one of the following statuses:

●​ Unresolved: The issue has not been resolved.

●​ Resolved: Adjusted program implementation to eliminate the risk.

●​ Partially Resolved: Adjusted program implementation to eliminate part of the risk. The

other part remains in the code, but is a result of an intentional decision.

●​ Acknowledged: The issue remains in the code, but is a result of an intentional decision.

The reported risk is accepted by the development team.

●​ Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Disclaimer
This audit report has been conducted on a best-effort basis within a tight deadline defined

by time and budget constraints. We reviewed only the specific smart contract code provided

by the client at the time of the audit, detailed in the Scope section. We do not review other

components that are part of the solution: neither implementation, nor general design, nor

business ideas that motivate them.

While we have employed the latest tools, techniques, and methodologies to identify potential

vulnerabilities, this report does not guarantee the absolute security of the contracts, as

undiscovered vulnerabilities may still exist. Our findings and recommendations are

suggestions to enhance security and functionality and are not obligations for the client to

implement.

The results of this audit are valid solely for the code and configurations reviewed, and any

modifications made after the audit are outside the scope of our responsibility. CoinFabrik

disclaims all liability for any damages, losses, or legal consequences resulting from the use or

misuse of the smart contracts, including those arising from undiscovered vulnerabilities or

changes made to the codebase after the audit.

Page 14 of 15

❚ Low
●​ Contract fails to deliver promised returns, but doesn't lose value

●​ Other security issues with minor impact

 Security Audit Report: Yala

This report is intended exclusively for the Yala team and should not be relied upon by any third

party without the explicit consent of CoinFabrik. Blockchain technology and smart contracts are

inherently experimental and involve significant risk; users and investors should fully understand

these risks before deploying or interacting with the audited contracts.

Changelog

Date Description

2025-02-07 Initial Report.

2025-03-07 Check fixes in reduced scope and report new critical issue.

2025-03-17 Third revision based on commit
41914529c8a2ce7336cbdf460af10c13acfe6a34.

Page 15 of 15

	
	Security Audit Report
	
	Executive Summary
	Scope
	Findings
	Critical Severity Issues
	CR-01 Can Unstake After Transferring Away
	Location
	Found on Commit
	Classification
	Description
	Recommendation
	Status

	CR-02 Yeti NFT Freeze
	Location
	Found on Commit
	Description
	Recommendation
	Status

	High Severity Issues
	Medium Severity Issues
	Low Severity Issues
	LO-01 No URI for NFTs
	Location
	Found on Commit
	Description
	Recommendation
	Status

	LO-02 Single NFT Staking Bypass
	Location
	Found on Commit
	Description
	Recommendation
	Status

	LO-03 Floating Pragma on core
	Found on Commit
	Location
	Description
	Recommendation
	Status

	Enhancements
	EN-01 No Limits or Rewards in Stake Contract
	Location
	Found on Commit
	Description
	Recommendation
	Status

	EN-02 Import Ownable2Step
	Location
	Found on Commit
	Description
	Recommendation
	Status

	EN-03 Simplify NFT Eligibility
	Location
	Found on Commit
	Description
	Recommendation
	Status

	Other Considerations
	Upgrades
	Privileged Roles
	Yetiasd
	Owner

	Stake

	About CoinFabrik
	Methodology
	Severity Classification
	Issue Status
	Disclaimer
	Changelog

