
Yala
Smart Contract
Security Assessment
VERSION 1.1

AUDIT DATES:

AUDITED BY:

February 13th to February 24th, 2025
10xhash
said

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Contents 1 Introduction 2

1.1 About Zenith 3

1.2 Disclaimer 3

1.3 Risk Classification 3

2 Executive Summary 3

2.1 About Yala 4

2.2 Scope 4

2.3 Audit Timeline 6

2.4 Issues Found 6

3 Findings Summary 6

4 Findings 8

4.1 Critical Risk 9

4.2 High Risk 16

4.3 Medium Risk 22

4.4 Low Risk 34

4.5 Informational 58

2

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

1
Introduction

1.1 About Zenith

Zenith is an offering by Code4rena that provides consultative audits from the very best
security researchers in the space. We focus on crafting a tailored security team specifically
for the needs of your codebase.

Learn more about us at https://code4rena.com/zenith.

1.2 Disclaimer

This report reflects an analysis conducted within a defined scope and time frame, based on
provided materials and documentation. It does not encompass all possible vulnerabilities
and should not be considered exhaustive.

The review and accompanying report are presented on an "as-is" and "as-available" basis,
without any express or implied warranties.

Furthermore, this report neither endorses any specific project or team nor assures the
complete security of the project.

1.3 Risk Classification

SEVERITY LEVEL IMPACT: HIGH IMPACT: MEDIUM IMPACT: LOW

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

3

https://code4rena.com/zenith

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

2
Executive Summary

2.1 About Yala

Yala is a DeFi ecosystem designed to connect the Bitcoin liquidity to various sources of
yields with a cross-chain strategy.

2.2 Scope

The engagement involved a review of the following targets:

Target yala-core

Repository https://github.com/yalaorg/yala-core/

Commit Hash db4ff1248d7017a53ad3304222ba54296a0c6fa0

Files core/BorrowerOperations.sol
core/DebtToken.sol
core/Factory.sol
core/GasPool.sol
core/PSM.sol
core/PriceFeed.sol
core/RepayerDelegator.sol
core/StabilityPool.sol
core/TroveManager.sol
core/YalaCore.sol
dependencies/DelegatedOps.sol
dependencies/EnumberableCollateral.sol
dependencies/YalaBase.sol
dependencies/YalaMath.sol
dependencies/YalaOwnable.sol
utils/MultiTroveGetters.sol

4

https://github.com/yalaorg/yala-core/

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Target yala-yield-farming

Repository https://github.com/yalaorg/yala-yield-farming

Commit Hash 6f62be436641ad5d6518ac7314ad76aee1770ab3

Files core/V3LPStaking.sol
core/V3LPStakingHelpers.sol
dependencies/EnumerableStake.sol
dependencies/PoolADdress.sol

Target yala-notary

Repository https://github.com/yalaorg/yala-notary

Commit Hash d7b1c5f5743e9c23dbd3d2132260d721debab33d

Files BridgeController.sol
BridgeToken.sol
NotaryBridge.sol
NotaryCustoryBridge.sol

5

https://github.com/yalaorg/yala-yield-farming
https://github.com/yalaorg/yala-notary

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

2.3 Audit Timeline

February 13, 2025 Audit start

February 24, 2025 Audit end

March 4, 2025 Report published

2.4 Issues Found

SEVERITY COUNT

Critical Risk 3

High Risk 3

Medium Risk 7

Low Risk 12

Informational 2

Total Issues 27

6

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

3
Findings Summary

ID Description Status

C-1 Re-entrancy in V3LPStaking allows an attacker to disallow
withdrawals

Resolved

C-2 Calling ‘troveManager‘’s ‘accrueInterests‘ directly will not
distribute ‘yieldSP‘ to ‘StabilityPool‘ users.

Resolved

C-3 Free debt token minting in PSM when the peg token uses
non-18 decimals.

Resolved

H-1 ‘BorrowerOperations‘’s ‘openTrove‘ not using latest trove
state when calculating ‘TCR‘

Resolved

H-2 Lack of liquidation fees allows an attacker to self liquidate
for profit

Resolved

H-3 uint96 casting for scaled price can lead to invalid prices Resolved

M-1 Users can immediately reset newly created CDPs Resolved

M-2 Equal division of collateral can cause some deserving to-
kens to be lost

Acknowledged

M-3 Collateral surplus is considered as part of totalActiveCol-
lateral causing mis-representation of the TCR

Resolved

M-4 Gas compensation is unbacked Resolved

M-5 Interest is not accrued before parameter updates Resolved

M-6 Rounding down for ‘totalInterest‘ can cause withdrawals to
revert

Resolved

M-7 Chainlink’s previous round fetching doesn’t consider phase
changes

Resolved

L-1 Inconsistency between batch and sequential liquidation Acknowledged

7

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

ID Description Status

L-2 Incorrect error factoring can cause a portion of withdrawals
to be stuck

Resolved

L-3 ScaleUpdated event is emitted incorrectly Resolved

L-4 Debt tokens are not burned when offesting Resolved

L-5 Incorrect event emission when withdrawing Resolved

L-6 BridgeController always assumes e18 decimals for delay
classification

Resolved

L-7 Negative values for prices are currently allowed Resolved

L-8 TCR restrictions on withdrawals can cause dependence on
other positions

Acknowledged

L-9 Debt repayments cannot be made in case protocol is
paused

Resolved

L-10 Short circuiting interest rewards is flawed Resolved

L-11 ‘maxSeizedColl‘ value is rounded down in favor of default-
ers

Acknowledged

L-12 Defaulted debt and interest is not updated in case collateral
value remains same

Resolved

I-1 computeNewStake always return 1:1 ratio Acknowledged

I-2 User can bypass ‘buy‘ and ‘sell‘ fee in ‘PSM‘ Resolved

8

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4
Findings

4.1 Critical Risk

A total of 3 critical risk findings were identified.

[C-1] Re-entrancy in V3LPStaking allows an attacker to disallow
withdrawals

SEVERITY: Critical IMPACT: High

STATUS: Resolved LIKELIHOOD: High

Target
• V3LPStaking.sol

Description:
The V3LPStaking contract invokes safeTransferFrom before clearing the tokens
information from stakes mapping

function unstake(uint256 id) external override {
IUniswapV3Pool pool = _getPool(id);
require(contains(msg.sender, pool, id), "not staked yet");
EnumerableStake.Info memory info = stakes[msg.sender][pool].get(id);
require(block.timestamp > info.unlockAt, "not unlocked yet");

/> positionManager.safeTransferFrom(address(this), msg.sender, id);
stakes[msg.sender][pool].remove(id);
totalStakes[info.pool] -= info.amount;
emit Unstaked(msg.sender, id);

safeTransferFrom of ERC721 passes the execution on to the receiver if the receiver is a
contract. This allows an attacker to first transfer back the assets to the V3LPStaking
contract and then to re-enter and invoke unstake function on V3LPStaking with the same
tokenId. This can be repeated how much ever times needed and will reduce the totalStakes
of the pool. Following this, other legit stakers of the pool won't be able to unstake because
it will underflow when performing the stake subtraction

9

https://github.com/yalaorg/yala-yield-farming/blob/6f62be436641ad5d6518ac7314ad76aee1770ab3/contracts/core/V3LPStaking.sol#L73-L81

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:
Perfrom the NFT transfer at the end

function unstake(uint256 id) external override {
IUniswapV3Pool pool = _getPool(id);
require(contains(msg.sender, pool, id), "not staked yet");
EnumerableStake.Info memory info = stakes[msg.sender][pool].get(id);
require(block.timestamp > info.unlockAt, "not unlocked yet");
stakes[msg.sender][pool].remove(id);
totalStakes[info.pool] -= info.amount;
emit Unstaked(msg.sender, id);

/> positionManager.safeTransferFrom(address(this), msg.sender, id);

Yala: Resolved at V3LPStaking.sol#L80

Zenith: Verified.

10

https://github.com/yalaorg/yala-yield-farming/blob/audit-v1.1/contracts/core/V3LPStaking.sol#L80

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[C-2] Calling troveManager's accrueInterests directly will not
distribute yieldSP to StabilityPool users.

SEVERITY: Critical IMPACT: High

STATUS: Resolved LIKELIHOOD: High

Target
• TroveManager.sol#L494-L517
• StabilityPool.sol#L402

Description:
Inside TroveManager, it is possible to trigger accrueInterests directly. Additionally,
accrueInterests is triggered during several operations that require the latest state of
TroveManager.

function accrueInterests() public returns (uint256 yieldSP,
uint256 yieldFee) {

(uint256 applicable, uint256 mintAmount) = getPendingInterest();
if (lastInterestUpdate /= 0) {

lastInterestUpdate = applicable;
return (0, 0);

}
if (mintAmount > 0) {

uint256 interestNumerator = (mintAmount * DECIMAL_PRECISION)
+ lastActiveInterestError_Redistribution;

uint256 interestRewardPerUnit = interestNumerator
/ totalActiveDebt;

lastActiveInterestError_Redistribution = interestNumerator
- totalActiveDebt * interestRewardPerUnit;

L_active_interest += interestRewardPerUnit;
yieldFee = (totalActiveDebt * interestRewardPerUnit)

/ DECIMAL_PRECISION;
totalActiveInterest += yieldFee;
if (SP_YIELD_PCT > 0) {

yieldSP = (yieldFee * SP_YIELD_PCT) / DECIMAL_PRECISION;
yieldFee -= yieldSP;

>>> debtToken.mint(address(stabilityPool), yieldSP);
emit SPYieldAccrued(yieldSP);

}

11

https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/TroveManager.sol#L494-L517
https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/StabilityPool.sol#L402

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

debtToken.mint(YALA_CORE.feeReceiver(), yieldFee);
lastInterestUpdate = applicable;
emit InterestAccrued(yieldFee);

}
}

Inside accrueInterests, if SP_YIELD_PCT is not 0, yieldSP is calculated and minted to the
stabilityPool. However, if accrueInterests is called directly, the minted yieldSP will not
be distributed to the StabilityPool's depositors.

function _accrueAllYieldGains() internal {
uint256 length = collateralTokens.length();
uint256 _newYield = 0;
for (uint256 i = 0; i < length; i++) {

(address troveManager,) = collateralTokens.at(i);
(uint256 yieldSp,) = ITroveManager(troveManager).accrueInterests();
if (yieldSp > 0) {

_newYield = _newYield + yieldSp;
}

}
if (_newYield > 0) {

uint256 accumulatedYieldGains = yieldGainsPending + _newYield;
if (accumulatedYieldGains /= 0) return;
uint256 totalDebtTokenDepositsCached = totalDebtTokenDeposits; //

cached to save an SLOAD
if (totalDebtTokenDepositsCached < DECIMAL_PRECISION) {

yieldGainsPending = accumulatedYieldGains;
return;

}
yieldGainsPending = 0;
uint256 yieldNumerator = accumulatedYieldGains * DECIMAL_PRECISION

+ lastYieldError;
uint256 yieldPerUnitStaked = yieldNumerator

/ totalDebtTokenDepositsCached;
lastYieldError = yieldNumerator - yieldPerUnitStaked

* totalDebtTokenDepositsCached;
uint256 marginalYieldGain = yieldPerUnitStaked * (P - 1);
epochToScaleToG[currentEpoch][currentScale]

= epochToScaleToG[currentEpoch][currentScale] + marginalYieldGain;
emit G_Updated(epochToScaleToG[currentEpoch][currentScale],

currentEpoch, currentScale);
}

}

It can be seen that inside StabilityPool, yieldSp is distributed under the assumption that
TroveManager's accrueInterests is only called when _accrueAllYieldGains is triggered. If

12

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

accrueInterests is called outside of _accrueAllYieldGains, the yield will not be
distributed.

Recommendations:
Inside StabilityPool, consider adding a function to distribute the yield and allowing it to
be called by TroveManager right after yieldSP is minted within TroveManager's
accrueInterests.

Yala: Resolved with @a7729496c6...

Zenith: Verified.

13

https://github.com/yalaorg/yala-core/commit/a7729496c6ffc935b87c69128839eda070eabfe7

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[C-3] Free debt token minting in PSM when the peg token uses
non-18 decimals.

SEVERITY: Critical IMPACT: High

STATUS: Resolved LIKELIHOOD: High

Target
• PSM.sol#L85-L88

Description:
When users call buy inside PSM and provide amountDebtToken they want to mint, it calls
estimateBuy to calculate the amountPegTokenUsed that users have to pay.

function buy(uint256 amountDebtToken)
external override whenNotPaused returns (uint256 amountPegTokenUsed,
uint256 fee) {
require(amountDebtToken > 0, "PSM: Amount debt token must be greater than
0");
require(totalActivedebt + amountDebtToken <= supplyCap, "PSM: Supply cap
reached");
totalActivedebt = totalActivedebt + amountDebtToken;

>>> (amountPegTokenUsed, fee) = estimateBuy(amountDebtToken);
IERC20(pegToken).safeTransferFrom(msg.sender, address(this),
amountPegTokenUsed);
debtToken.mint(msg.sender, amountDebtToken);
if (fee > 0) debtToken.mint(YALA_CORE.feeReceiver(), fee);

emit Buy(msg.sender, amountDebtToken, amountPegTokenUsed, fee);
}

Inside estimateBuy, it can be seen that when calculating amountPegTokenUsed, it uses
priceFactor to scale the amount that needs to be paid, depending on the peg token's
decimals.

function estimateBuy(uint256 amountDebtToken)
public view override returns (uint256 amountPegTokenUsed, uint256 fee) {

fee = (amountDebtToken * feeIn) / DECIMAL_PRECISIONS;
>>> amountPegTokenUsed = (amountDebtToken + fee) / priceFactor;

14

https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/PSM.sol#L85-L88

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

}

For instance, if the peg token's decimals are 8, the priceFactor will be 10 ** (18 -
pegTokenDecimals) = 10 ** 10. This means that if a user provides an amountDebtToken
where amountDebtToken + fee < priceFactor, causing amountPegTokenUsed to become 0,
they can mint the amountDebtToken for free.

Recommendations:
Consider redesigning the buy function, allow users to provide the amount of peg tokens
they want to convert to debt tokens and calculate amountDebtToken accordingly to avoid
rounding issues.

Yala: Resolved with the following commit

Zenith: Verified.

15

https://github.com/yalaorg/yala-core/commit/6c0d30e1711ed49257b6c31d2fd6c6c07283bd2d#diff-0239099871867e5a1edc171c49a80ef8f12d0dcc1d7f46689c7863d3c351ebecL62

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.2 High Risk

A total of 3 high risk findings were identified.

[H-1] BorrowerOperations's openTrove not using latest trove
state when calculating TCR

SEVERITY: High IMPACT: Medium

STATUS: Resolved LIKELIHOOD: High

Target
• BorrowerOperations.sol#L76
• TroveManager.sol#L256-L270

Description:
When openTrove is called, it will call getCollateralAndTCRData to get provided
troveManager's totalCollateral, totalDebt and totalInterest, which will be used to
calculate TCR and newTCR.

function openTrove(ITroveManager troveManager, address account,
uint256 _collateralAmount, uint256 _debtAmount)
external callerOrDelegated(account) returns (uint256 id) {

require(!YALA_CORE.paused(), "BorrowerOps: Deposits are paused");
LocalVariables_openTrove memory vars;
vars.netDebt = _debtAmount;
vars.compositeDebt = _getCompositeDebt(vars.netDebt);
_requireAtLeastMinNetDebt(vars.compositeDebt);

>>> (vars.collateralToken, vars.totalCollateral, vars.totalDebt,
vars.totalInterest, vars.price)
= _getCollateralAndTCRData(troveManager);

(vars.MCR, vars.CCR) = (troveManager.MCR(), troveManager.CCR());
vars.ICR = YalaMath._computeCR(_collateralAmount,

vars.compositeDebt, vars.price);
_requireICRisAboveMCR(vars.ICR, vars.MCR);

>>> uint256 TCR = YalaMath._computeCR(vars.totalCollateral, vars.totalDebt
+ vars.totalInterest, vars.price);

if (TCR >= vars.CCR) {

16

https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/BorrowerOperations.sol#L76
https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/TroveManager.sol#L256-L270

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

>>> uint256 newTCR = _getNewTCRFromTroveChange(vars.totalCollateral
* vars.price, vars.totalDebt + vars.totalInterest, _collateralAmount
* vars.price, true, vars.compositeDebt, true);

_requireNewTCRisAboveCCR(newTCR, vars.CCR);
} else {

_requireICRisAboveCCR(vars.ICR, vars.CCR);
}
// Create the trove
id = troveManager.openTrove(account, _collateralAmount,

vars.compositeDebt);
// Move the collateral to the Trove Manager
vars.collateralToken.safeTransferFrom(msg.sender,

address(troveManager), _collateralAmount);
// and mint the DebtAmount to the caller and gas compensation for

Gas Pool
debtToken.mintWithGasCompensation(account, vars.netDebt);
emit TroveCreated(account, troveManager, id, _collateralAmount,

vars.compositeDebt);
}

However, it doesn't trigger TroveManager.accrueInterests, causing the returned
totalInterest to be outdated and resulting in incorrect calculations of TCR and newTCR.

Recommendations:
Trigger TroveManager.accrueInterests before retrieving all the trove state information.

Yala: Resolved with @720460c164f...

Zenith: Verified.

17

https://github.com/yalaorg/yala-core/commit/720460c164f9188879168dca82f2eecb5342437c

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[H-2] Lack of liquidation fees allows an attacker to self liquidate
for profit

SEVERITY: High IMPACT: High

STATUS: Resolved LIKELIHOOD: Medium

Target
• TroveManager.sol

Description:
Currently there is no liquidation fee attached to liquidations. Hence on a liquidation, the
entire amount of collateral is given back to the liquidator (JIT case) if they can provide
totalTakenDebt - gasCompensation amount of debt tokens. This is flawed as this allows an
attacker to drain yala by self liquidating

function batchLiquidate(uint256[] memory ids, bool isJIT)
external whenNotPaused whenNotShutdown {

//.

debtToken.returnFromPool(gasPoolAddress, msg.sender,
totals.debtGasCompensation);
_sendCollateral(msg.sender, totals.collGasCompensation);
}

function _JIT(address account, uint256 _coll, uint256 _debt,
uint256 _interest) internal {
if (_debt /= 0 && _interest /= 0) {

return;
}
totalActiveDebt -= _debt;
totalActiveInterest -= _interest;
debtToken.burn(account, _debt + _interest);
_sendCollateral(account, _coll);

Eg: Currently stability pool has 0 tokens (ie. this is to make the JIT liquidator liquidate the
entire position) Attacker opens a position just below liquidation threshold with 100
collateral, 80 debt token. Out of this, 5 debt tokens will be sent to the gas pool In the next

18

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L365-L368

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

block it becomes liquidateable (either via interest update or via price change. attacker can
be guarded against other liquidators by prebooking transaction slot in someway) Attacker
liquidates his own position. Now 100 collateral will be returned to him and 75 debt tokens
will be burned from him. The rest 5 will be sent to him as debt gas compensation. These
are free tokens. Attacker can open up several such positions to mint large amount of yala
tokens

Recommendations:
Enforcing a liquidation fee should prevent the above attack. But needs to think further
about the best way

Yala: Resolved with @1bdd4c4e7d...

Zenith: Verified.

19

https://github.com/yalaorg/yala-core/commit/1bdd4c4e7d3c74adb218627374efe33f5646b10f

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[H-3] uint96 casting for scaled price can lead to invalid prices

SEVERITY: High IMPACT: High

STATUS: Resolved LIKELIHOOD: Medium

Target
• PriceFeed.sol
• PriceFeed.sol

Description:
Prices are downcasted to uint96 while being scaled in order to maintain token decimals +
price decimals /= 36

function _storePrice(address _token, uint256 _price, uint256 _timestamp,
uint80 roundId) internal {

/> priceRecords[_token] = PriceRecord({ scaledPrice: uint96(_price),
timestamp: uint32(_timestamp), lastUpdated: uint32(block.timestamp),
roundId: roundId });
}

function _setOracle(address _token, address _chainlinkOracle,
uint32 _heartbeat) internal {

uint8 decimals = IERC20Metadata(_token).decimals();
if (decimals > 18) {

revert PriceFeed__UnsupportedTokenDecimalsError(_token,
decimals);

}
/> TARGET_DIGITS[_token] = MAX_DIGITS - decimals;

This is flawed as the scaled price can overflow uint96 for lower decimal tokens

Eg:

function testUint96() public {
// asset /= WBTC
uint price=9782192244323;
uint assetDecimlas = 8;

20

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/PriceFeed.sol#L211-L214
https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/PriceFeed.sol#L75-L80

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

uint maxDecimals = 36;
uint oracleDecimals = 8;
uint target = maxDecimals - assetDecimlas;

uint scaledPrice = (price) * (10 ** (target - oracleDecimals));
assert(scaledPrice > type(uint96).max);

}

Recommendations:
Make prices uint256 itself

Yala: Resolved with @527bfd6acfe...

Zenith: Verified.

21

https://github.com/yalaorg/yala-core/commit/527bfd6acfeff811e74dd60c935c9d6c5640ac56

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.3 Medium Risk

A total of 7 medium risk findings were identified.

[M-1] Users can immediately reset newly created CDPs

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• TroveManager.sol#L455-L464

Description:
When a new CDP is created, TroveManager will be instantiated and configured using the
parameters provided by the owner when calling deployNewCDP.

function setParameters(IPriceFeed _priceFeed, IERC20 _collateral,
DeploymentParams memory params) external {
require(address(collateralToken) /= address(0) && msg.sender /=
factoryAddress, "TM: parameters set");
require(params.interestRate < DECIMAL_PRECISION, "TM: interest rate too
high");
require(params.maxDebt > 0, "TM: interest rate too high");
require(params.spYieldPCT <= DECIMAL_PRECISION, "TM: sp yield pct too
high");
require(params.MCR > DECIMAL_PRECISION && params.SCR >= params.MCR &&
params.CCR >= params.SCR, "TM: invalid cr parameters");
collateralToken = _collateral;
_setPriceFeed(_priceFeed);
_setMetadataNFT(params.metadataNFT);
_setInterestRate(params.interestRate);
_setMaxSystemDebt(params.maxDebt);
_setSPYielPCT(params.spYieldPCT);
_setMaxCollGasCompensation(params.maxCollGasCompensation);
_setLiquidationPenaltySP(params.liquidationPenaltySP);
_setLiquidationPenaltyRedist(params.liquidationPenaltyRedistribution);
MCR = params.MCR;

22

https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/TroveManager.sol#L455-L464

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SCR = params.SCR;
CCR = params.CCR;
emit CRUpdated(MCR, SCR, CCR);

}

When the last user of the TroveManager closes the trove, it will _resetState, which includes
setting maxSystemDebt, interestRate, and SP_YIELD_PCT to 0, effectively preventing
anyone from opening a trove using this TroveManager.

function _resetState() private {
if (totalSupply() /= 0) {

maxSystemDebt = 0;
interestRate = 0;
SP_YIELD_PCT = 0;
totalStakes = 0;
totalStakesSnapshot = 0;
totalCollateralSnapshot = 0;
L_collateral = 0;
L_debt = 0;
L_defaulted_interest = 0;
L_active_interest = 0;
lastCollateralError_Redistribution = 0;
lastDebtError_Redistribution = 0;
lastActiveInterestError_Redistribution = 0;
lastDefaultedInterestError_Redistribution = 0;
totalActiveCollateral = 0;
totalActiveDebt = 0;
totalActiveInterest = 0;
defaultedCollateral = 0;
defaultedDebt = 0;
defaultedInterest = 0;
lastInterestUpdate = 0;
nonce = 0;

}
}

This opens a grief vector: when a new TroveManager is created, an attacker can create and
immediately close the trove to trigger _resetState, preventing users from creating new
troves until the TroveManager is reconfigured.

Recommendations:
When _resetState is called, consider to not reset maxSystemDebt, interestRate,
SP_YIELD_PCT.

23

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Yala: Resolved with @1fb06a6f2a0...

Zenith: Verified.

24

https://github.com/yalaorg/yala-core/commit/1fb06a6f2a01ac32edfab1a343112b9163bea1db

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[M-2] Equal division of collateral can cause some deserving
tokens to be lost

SEVERITY: Medium IMPACT: Medium

STATUS: Acknowledged LIKELIHOOD: Medium

Target
• TroveManager.sol

Description:
Currently the collateral division b/w the stability pool and the second method doesn't factor
in the different possible liquidation penalties. They are divided equally based on the debt
amount they are taking in

function _liquidatePenalty(LiquidationValues memory totals,
SingleLiquidation memory singleLiquidation, uint256 _price, bool isJIT)
internal view {

//.

/> collSPPortion = (singleLiquidation.collToLiquidate
* (singleLiquidation.debtOffset + singleLiquidation.interestOffset))
/ (singleLiquidation.debtToLiquidate + singleLiquidation.interest);

}

This causes scenario's where the amount supposed to be received by stability pool can go
the defaulter as collateral surplus

Eg: debt = 100 collateral = 150 liquidation penalty SPool = 1.6 liquidation penalty JIT = 1.4

assume spool has debt == 50. Now collateral will be split as 75,75 This is loss of 5 for the
spool (50 * 1.6 == 80) and an excess of 5 for the JIT (50 * 1.4 == 70). Hence this amount
will go to the defeulter instead of the spool while the amount was enough to settle both
parties ideally

25

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L403

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:
Need to consider a method which factors in the different liquidation penalties as well

Yala: Acknowledged

26

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[M-3] Collateral surplus is considered as part of
totalActiveCollateral causing mis-representation of the TCR

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• TroveManager.sol

Description:
Collateral surplus from liquidations is included in the totalActiveCollateral which is used
for TCR calculations. This is problematic because these assests can be freely moved
anytime which will decrase the TCR. Hence the values given by TCR won't be reliable to
asses the risk of the protocol before determining the ratio in which trove adjustments can
be made

function claimCollSurplus(address account, uint256 _amount) external {
require(accountCollSurplus[account] >= _amount, "TM: insufficient coll
surplus");
accountCollSurplus[account] -= _amount;
_sendCollateral(account, _amount);
emit CollSurplusClaimed(account, _amount);

}

Recommendations:
Don't include collateral surplus in totalActiveInterest

Yala: Resolved with @9d692df85e...

Zenith: Verified.

27

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L374-L379
https://github.com/yalaorg/yala-core/commit/9d692df85ef121f99e18bb50b600b0adfe8a0131

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[M-4] Gas compensation is unbacked

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• TroveManager.sol

Description:
Liquidators are given out gas compensations. But this amount is not backed/accounted by
anything (eg: like a system-wide bad debt). Hence these amount of tokens will cause the
overall value of the stable yala token to be lower

function batchLiquidate(uint256[] memory ids, bool isJIT)
external whenNotPaused whenNotShutdown {

....

require(totals.debtGasCompensation > 0, "TM: nothing to liquidate");
totalActiveInterest = totalActiveInterest - totals.interestOffset;
totalActiveDebt = totalActiveDebt - totals.debtGasCompensation
- totals.debtOffset;

....

debtToken.returnFromPool(gasPoolAddress, msg.sender,
totals.debtGasCompensation);

Recommendations :
Develop a mechanism to deal with this amount eg:maintain a system-wide bad debt and
adjust it with the yield

Yala: Resolved with @ed79a2a9e4...

Zenith: Verified.

28

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L360
https://github.com/yalaorg/yala-core/commit/ed79a2a9e4006a3d29bc9c1607729a540ca271b9

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[M-5] Interest is not accrued before parameter updates

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• TroveManager.sol

Description:
Multiple functions like setInterestRate, setSPYielPCT function doesn't invoke the
accrueInterests function before updating to their new value. Hence the new interest rate
will be applied for the entire period beggining from the last update rather than from the
moment the update was made

function setInterestRate(uint256 _interestRate) external onlyOwner {
_setInterestRate(_interestRate);

}

function _setInterestRate(uint256 _interestRate) internal {
interestRate = _interestRate;
emit InterestRateUpdated(_interestRate);

}

function setSPYielPCT(uint256 _spYielPCT) external onlyOwner {
_setSPYielPCT(_spYielPCT);

}

Recommendations:
Invoke the accrueInterests function before updating the parameters

Yala: Resolved at TroveManager.sol#L204

Zenith: Verified.

29

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L184-L191
https://github.com/yalaorg/yala-core/blob/audit-v1.2/contracts/core/TroveManager.sol#L204

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[M-6] Rounding down for totalInterest can cause
withdrawals to revert

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Low

Target
• TroveManager.sol
• TroveManager.sol

Description:
When adding to the totalInterest, the current interest delta is rounded down. While for
the individual trove positions, this need not be the case. This makes it possible for the
totalInterest to be less than the sum of individual trove interests. One scenario where this
can have a significant impact is when all the troves attempt to close (for eg: shutdown).
The last trove will be unable to close because of underflow when attempting to subtact the
trove's interest from the totalInterest

totalInterest rounds down https://github.com/yalaorg/yala-
core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L505-
L506

function accrueInterests() public returns (uint256 yieldSP,
uint256 yieldFee) {

(uint256 applicable, uint256 mintAmount) = getPendingInterest();
if (lastInterestUpdate /= 0) {

lastInterestUpdate = applicable;
return (0, 0);

}
if (mintAmount > 0) {

uint256 interestNumerator = (mintAmount * DECIMAL_PRECISION)
+ lastActiveInterestError_Redistribution;

uint256 interestRewardPerUnit = interestNumerator
/ totalActiveDebt;

lastActiveInterestError_Redistribution = interestNumerator
- totalActiveDebt * interestRewardPerUnit;

L_active_interest += interestRewardPerUnit;
/> yieldFee = (totalActiveDebt * interestRewardPerUnit)

/ DECIMAL_PRECISION;

30

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/#L505-L506
https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L519-L527

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

totalActiveInterest += yieldFee;

individual trove's interest calculation need not always result in precision loss even if the
totalInterest calculation had rounded down https://github.com/yalaorg/yala-
core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L519-
L527

function _accrueTroveInterest(uint256 id) internal returns (uint256 total,
uint256 accrued) {
accrueInterests();
Trove storage t = Troves[id];
if (rewardSnapshots[id].activeInterest < L_active_interest) {

accrued = ((L_active_interest - rewardSnapshots[id].activeInterest)
* t.debt) / DECIMAL_PRECISION;

t.interest += accrued;
}
total = t.interest;

}

POC Test:

Add the following to test/BorrowerOperations.test.ts. It can be seen that closeTrove will
revert with underflow

it.only('cannot close trove due to underflow', async () /> {
const troveManager = await deployNewCDP(fixture, { spYieldPCT:
0n,interestRate: parseEther("0.07")})
const { id } = await openTrove(fixture, { debt: 1800112548948470006153n,
troveManager })
const { BorrowerOperations, accounts, signers, DebtToken,
MockCollateralToken } = fixture
await time.increase(356)
await troveManager.accrueInterests();

await time.increase(356)
await troveManager.shutdown()
await time.increase(7000)

await BorrowerOperations.closeTrove(troveManager, id, accounts[1])
})

Recommendations:
When closing the trove, limit subtraction to 0 to prevent the underflow

31

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Yala: Resolved with @8b666bef2d... & @7255a2d052b...

Zenith: Verified.

32

https://github.com/yalaorg/yala-core/commit/8b666bef2d1ca827980eda7abba9ba1d9a48bb89
https://github.com/yalaorg/yala-core/commit/7255a2d052b2400c41b1e419dae87984b12f0d84

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[M-7] Chainlink's previous round fetching doesn't consider
phase changes

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• PriceFeed.sol

Description:
The previousRoundId to fetch is always computed as _currentRoundId - 1. This is flawed
as when a phase changes, the newRoundId will be (phaseId * 2^64 + 1) and the actual
previous roundId would be ((phaseId - 1) * 2^64 + latestRoundIdOfPreviousPhase)

function _fetchPrevFeedResponse(IAggregatorV3Interface _priceAggregator,
uint80 _currentRoundId)
internal view returns (FeedResponse memory prevResponse) {

//.

/> try _priceAggregator.getRoundData(_currentRoundId - 1)
returns (uint80 roundId, int256 answer, uint256 /* startedAt */,
uint256 timestamp, uint80 /* answeredInRound */) {

prevResponse.roundId = roundId;

Fetching round 0 will return 0 values which will cause the response to be rejected. This
condition remains till the roundId increases. During this time period all the functionalities
requiring price will be DOS'd

Recommendations:
Compare with the actual previous round id rather than always taking latest - 1

Yala: Resolved with @4dcc36bee1c...

Zenith: Verified.

33

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/PriceFeed.sol#L158
https://github.com/yalaorg/yala-core/commit/4dcc36bee1cc3f7b0cee898ba94b896dd29239d1

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.4 Low Risk

A total of 12 low risk findings were identified.

[L-1] Inconsistency between batch and sequential liquidation

SEVERITY: Low IMPACT: Low

STATUS: Acknowledged LIKELIHOOD: Low

Target
• TroveManager.sol#L347-L372

Description:
There is a known issue in this codebase forks inside batchLiquidate, caused by bad debt
redistribution happens at the end of operation, after every troves provided is processed.

function batchLiquidate(uint256[] memory ids, bool isJIT)
external whenNotPaused whenNotShutdown {

uint256 price = fetchPrice();
LiquidationValues memory totals;
totals.remainingDeposits = stabilityPool.getTotalDeposits();
for (uint256 i = 0; i < ids.length; i++) {

uint256 id = ids[i];
SingleLiquidation memory singleLiquidation;
(singleLiquidation.coll, singleLiquidation.debt,

singleLiquidation.interest) = applyPendingRewards(id);
_liquidate(id, totals, singleLiquidation, price, isJIT);

}
require(totalSupply() > 0, "TM: at least one trove to redistribute

coll and debt");
require(totals.debtGasCompensation > 0, "TM: nothing to liquidate");
totalActiveInterest = totalActiveInterest - totals.interestOffset;
totalActiveDebt = totalActiveDebt - totals.debtGasCompensation

- totals.debtOffset;
if (totals.debtOffset > 0) {

_sendCollateral(address(stabilityPool), totals.collOffset);
stabilityPool.offset(totals.debtOffset + totals.interestOffset,

totals.collOffset);

34

https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/TroveManager.sol#L347-L372

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

}
debtToken.returnFromPool(gasPoolAddress, msg.sender,

totals.debtGasCompensation);
_sendCollateral(msg.sender, totals.collGasCompensation);
if (isJIT) {

_JIT(msg.sender, totals.collRedistOrJIT, totals.debtRedistOrJIT,
totals.interestRedistOrJIT);

} else {
>>> _redistribute(totals.collRedistOrJIT, totals.debtRedistOrJIT,

totals.interestRedistOrJIT);
}

}

When a trove creates bad debt, the bad debt should be updated immediately, as it impacts
the next trove's debt and collateral offset calculation. Otherwise, the next trove will process
incorrect debt and collateral calculations, which will affect the system's health.

Recommendations:
Either Redistribute bad debt after each liquidation or accept the risk.

Yala: Acknowledged

35

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-2] Incorrect error factoring can cause a portion of
withdrawals to be stuck

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• StabilityPool.sol

Description:
The new P by scale function adds the previous loss in P percentage wise to the new P. But
this is flawed as a deposit in b/w can cause the sum of positions debt's to be greater than
the acually added debt tokens

function _getNewPByScale(uint256 _currentP, uint256 _newProductFactor,
uint256 _lastDebtLossErrorByP_Offset,
uint256 _lastDebtLossError_TotalDeposits, uint256 _scale)
internal pure returns (uint256) {
uint256 errorFactor;
if (_lastDebtLossErrorByP_Offset > 0) {

errorFactor = (_lastDebtLossErrorByP_Offset * _newProductFactor
* _scale) / _lastDebtLossError_TotalDeposits / DECIMAL_PRECISION;
}
return (_currentP * _newProductFactor * _scale + errorFactor)
/ DECIMAL_PRECISION;

This can cause the final withdrawals to revert due to overflow

POC Test:

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

contract IncorrectErrorOffsetAdditionTest is Test {
uint totalDebtTokenDeposits;
uint debtLoss1;
uint debtLoss2;

36

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/StabilityPool.sol#L261-L266

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

uint addingAmountInBw;

uint P = 1e18;
uint pDeposit1;
uint pDeposit2;

uint constant DECIMAL_PRECISION = 1e18;
uint SCALE_FACTOR = 1e9;
uint128 currentScale;
uint128 currentEpoch;

struct Snapshots {
uint256 P;
uint128 scale;
uint128 epoch;

}

uint lastDebtLossErrorByP_Offset;
uint lastDebtLossError_TotalDeposits;

mapping(address /> Snapshots) userDeposits;

function inner_IncorrectAdditionOfErrorOffset(uint lossAmount1,uint
lossAmount2,uint userDeposit1,uint userDeposit2) internal {

totalDebtTokenDeposits= userDeposit1;
pDeposit1 = P;

userDeposits[address(1)]
= Snapshots({P:P,scale:currentScale,epoch:currentEpoch});

offset(lossAmount1);

console.log("lastDebtLossErrorByP_Offset",lastDebtLossErrorByP_Offset);

totalDebtTokenDeposits += userDeposit2;
pDeposit2 = P;

userDeposits[address(2)]
= Snapshots({P:P,scale:currentScale,epoch:currentEpoch});

offset(lossAmount2);

uint user1WithdrawableAmount
= _getCompoundedDebtDeposit(address(1),userDeposit1);

uint user2WithdrawableAmount
= _getCompoundedDebtDeposit(address(2),userDeposit2);

37

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

console.log("userDeposit1",userDeposit1);
console.log("lossAmount1",lossAmount1);
console.log("pDeposit1",pDeposit1);
console.log("userDeposit2",userDeposit2);
console.log("lossAmount2",lossAmount2);
console.log("pDeposit2",pDeposit2);
console.log("totalDebtTokenDeposits",totalDebtTokenDeposits);
console.log("user1WithdrawableAmount",user1WithdrawableAmount);
console.log("user2WithdrawableAmount",user2WithdrawableAmount);
console.log("diff",int(totalDebtTokenDeposits)

- int(user1WithdrawableAmount+user2WithdrawableAmount));
// -3515916998693767
// -351590979023888
assert(totalDebtTokenDeposits >= user1WithdrawableAmount

+ user2WithdrawableAmount);
}

function testSpecific_IncorrectAdditionOfErrorOffset () public {
uint userDeposit1 = 5000000000000000003;

uint lossAmount1 =4999999999999999997;
uint userDeposit2 =1757958920326119919472530;
uint lossAmount2 =4000000001677213174;

inner_IncorrectAdditionOfErrorOffset(lossAmount1, lossAmount2,
userDeposit1, userDeposit2);
}

function _getCompoundedDebtDeposit(address _depositor,
uint256 initialDeposit) internal view returns (uint256) {

if (initialDeposit /= 0) {
return 0;

}
Snapshots memory snapshots = userDeposits[_depositor];
uint256 snapshot_P = snapshots.P;
uint128 scaleSnapshot = snapshots.scale;
uint128 epochSnapshot = snapshots.epoch;
// If stake was made before a pool-emptying event, then it has been

fully cancelled with debt /- so, return 0
if (epochSnapshot < currentEpoch) {

return 0;
}
uint256 compoundedStake;
uint128 scaleDiff = currentScale - scaleSnapshot;
uint256 cachedP = P;
uint256 currentPToUse = cachedP /= snapshot_P ? cachedP - 1 :

cachedP;
console.log("-1 performed",cachedP /= snapshot_P);

38

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

/* Compute the compounded stake. If a scale change in P was made
during the stake's lifetime,

* account for it. If more than one scale change was made, then the
stake has decreased by a factor of

* at least 1e-9 /- so return 0.
*/
if (scaleDiff /= 0) {

compoundedStake = (initialDeposit * currentPToUse) / snapshot_P;
} else if (scaleDiff /= 1) {

compoundedStake = (initialDeposit * currentPToUse) / snapshot_P
/ SCALE_FACTOR;

} else {
compoundedStake = 0;

}

if (compoundedStake < initialDeposit / 1e9) {
return 0;

}

return compoundedStake;
}

function offset(uint256 _debtToOffset) public {
uint256 totalDebt = totalDebtTokenDeposits; // cached to save an

SLOAD
if (totalDebt /= 0 /| _debtToOffset /= 0) {

return;
}
_updateCollRewardSumAndProduct(_debtToOffset, totalDebt);
_decreaseDebt(_debtToOffset);
}

function _decreaseDebt(uint256 _amount) internal {
uint256 newTotalDebtTokenDeposits = totalDebtTokenDeposits

- _amount;
totalDebtTokenDeposits = newTotalDebtTokenDeposits;

}

function _getNewPByScale(uint256 _currentP, uint256 _newProductFactor,
uint256 _lastDebtLossErrorByP_Offset,
uint256 _lastDebtLossError_TotalDeposits, uint256 _scale)
internal pure returns (uint256) {

uint256 errorFactor;
if (_lastDebtLossErrorByP_Offset > 0) {

// @bug this should be incorrect and should cause more than
withdrawable tokens than there is the debt amount left (users depositing

39

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

will result in greater than _lastDebtLossError_TotalDeposits amount of
deposits)

errorFactor = (_lastDebtLossErrorByP_Offset * _newProductFactor
* _scale) / _lastDebtLossError_TotalDeposits / DECIMAL_PRECISION;

console.log("error factor",errorFactor);
console.log("_newProductFactor",_newProductFactor);

}
console.log("_currentP",_currentP);
return (_currentP * _newProductFactor * _scale + errorFactor)

/ DECIMAL_PRECISION;
}

function _updateCollRewardSumAndProduct(uint256 _debtToOffset,
uint256 _totalDeposits) internal {

(uint256 debtLossPerUnitStaked, uint256 newLastDebtLossErrorOffset)
= _computeCollRewardsPerUnitStaked(_debtToOffset, _totalDeposits);

uint256 currentP = P;
uint256 newP;

assert(debtLossPerUnitStaked <= DECIMAL_PRECISION);
/*
* The newProductFactor is the factor by which to change all

deposits, due to the depletion of Stability Pool Debt in the liquidation.
* We make the product factor 0 if there was a pool-emptying.

Otherwise, it is (1 - debtLossPerUnitStaked)
*/
uint256 newProductFactor = uint256(DECIMAL_PRECISION)

- debtLossPerUnitStaked;

uint128 currentScaleCached = currentScale;
uint128 currentEpochCached = currentEpoch;

// If the Stability Pool was emptied, increment the epoch, and reset
the scale and product P

if (newProductFactor /= 0) {
currentEpoch = currentEpochCached + 1;
currentScale = 0;
newP = DECIMAL_PRECISION;

} else {
uint256 lastDebtLossErrorByP_Offset_Cached

= lastDebtLossErrorByP_Offset;
uint256 lastDebtLossError_TotalDeposits_Cached

= lastDebtLossError_TotalDeposits;
newP = _getNewPByScale(currentP, newProductFactor,

40

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

lastDebtLossErrorByP_Offset_Cached,
lastDebtLossError_TotalDeposits_Cached, 1);

console.log("newP ",newP);
console.log("newProductFactor,",newProductFactor);

// If multiplying P by a non-zero product factor would reduce P
below the scale boundary, increment the scale

if (newP < SCALE_FACTOR) {
console.log("newP lower than scale factor,",newP);
newP = _getNewPByScale(currentP, newProductFactor,

lastDebtLossErrorByP_Offset_Cached,
lastDebtLossError_TotalDeposits_Cached, SCALE_FACTOR);

currentScale = currentScaleCached + 1;
console.log("newP afterwrds,",newP);

// Increment the scale again if it's still below the
boundary. This ensures the invariant P /= 1e9 holds and

// addresses this issue from Liquity v1:
https://github.com/liquity/dev/security/advisories/GHSA-m9f3-hrx8-x2g3

if (newP < SCALE_FACTOR) {
console.log("newP 2x lower than scale factor,",newP);

newP = _getNewPByScale(currentP, newProductFactor,
lastDebtLossErrorByP_Offset_Cached,
lastDebtLossError_TotalDeposits_Cached, SCALE_FACTOR * SCALE_FACTOR);

currentScale = currentScaleCached + 2;
}

}

}
lastDebtLossErrorByP_Offset = currentP * newLastDebtLossErrorOffset;
lastDebtLossError_TotalDeposits = _totalDeposits;

assert(newP > 0);
P = newP;

}

function _computeCollRewardsPerUnitStaked(uint256 _debtToOffset,
uint256 _totalDebtDeposits) internal returns (
uint256 debtLossPerUnitStaked, uint256 newLastDebtLossErrorOffset) {

assert(_debtToOffset <= _totalDebtDeposits);
if (_debtToOffset /= _totalDebtDeposits) {

debtLossPerUnitStaked = DECIMAL_PRECISION; // When the Pool
depletes to 0, so does each deposit

41

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

newLastDebtLossErrorOffset = 0;
} else {

uint256 debtLossNumerator = _debtToOffset * DECIMAL_PRECISION;
/*
* Add 1 to make error in quotient positive. We want "slightly

too much" Debt loss,
* which ensures the error in any given compoundedDebtDeposit

favors the Stability Pool.
*/
debtLossPerUnitStaked = debtLossNumerator / _totalDebtDeposits

+ 1;
newLastDebtLossErrorOffset = debtLossPerUnitStaked

* _totalDebtDeposits - debtLossNumerator;
}

return (debtLossPerUnitStaked, newLastDebtLossErrorOffset);
}

}

Recommendations:
Yala: Resolved with @495eab3174... & @1cba6dc54756...

Zenith: Verified

42

https://github.com/yalaorg/yala-core/commit/495eab31746bde8ec00d6e89e3898be654090ca7
https://github.com/yalaorg/yala-core/commit/f72d0f8b63cf6b74c7f46079455c1002c1f7e33f#diff-1cba6dc54756d6e48926d14e0933ff37d349c271ae78f2b5f02e85aa8fc9c312R125

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-3] ScaleUpdated event is emitted incorrectly

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• StabilityPool.sol

Description:
The ScaleUpdated event is emitted even when a scale update doesn't actually occur

emit ScaleUpdated(currentScale);

Recommendations:
The event should be emitted inside the if clause.

Yala: Resolved with @d47893427db...

Zenith: Verified.

43

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/StabilityPool.sol#L249
https://github.com/yalaorg/yala-core/commit/d47893427dbc2c5fae9e4f93fa82c2f08c3685b8

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-4] Debt tokens are not burned when offesting

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• StabilityPool.sol

Description:
When offsetting the debt from stability pool, the amount is only adjusted to not be
claimable by the users but is not burned. This causes the totalSupply of the stable yala
token to be higher than the backing value

function _decreaseDebt(uint256 _amount) internal {
uint256 newTotalDebtTokenDeposits = totalDebtTokenDeposits - _amount;
totalDebtTokenDeposits = newTotalDebtTokenDeposits;
emit StabilityPoolDebtBalanceUpdated(newTotalDebtTokenDeposits);

Recommendations:
Additionally, burn the amount.

Yala: Resolved at @TroveManager.sol#L365...

Zenith: Verified

44

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/StabilityPool.sol#L269-L273
https://github.com/yalaorg/yala-core/blob/audit-v1.1/contracts/core/TroveManager.sol#L365

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-5] Incorrect event emission when withdrawing

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• StabilityPool.sol

Description:
The withdraw event emits the original value of _amount rather than the capped value in
case the amount was actually capped

function withdrawFromSP(uint256 _amount) external nonReentrant {

....

uint256 debtToWithdraw = YalaMath._min(_amount, compoundedDebtDeposit);

//.

emit Withdraw(msg.sender, newDeposit, _amount);
}

Recommendations:
Emit debtToWithdraw instead

Yala: Resolved at StabilityPool.sol#L133

Zenith: Verified.

45

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/StabilityPool.sol#L138
https://github.com/yalaorg/yala-core/blob/audit-v1.1/contracts/core/StabilityPool.sol#L133

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-6] BridgeController always assumes e18 decimals for delay
classification

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• BridgeController.sol
• BridgeController.sol

Description:
The getDelay assumes e18 as the decimal always in-order to the group the token amounts

function getDelay(IBridgeToken token, uint256 amount)
public view override returns (uint256 delay) {
if (amount / 1e18 /= 0) {

return tokenConfigs[token].refundDelays[RefundDelayType.LOW];
}
if (amount / 10e18 /= 0) {

return tokenConfigs[token].refundDelays[RefundDelayType.MIDDLE];
}
return tokenConfigs[token].refundDelays[RefundDelayType.HIGH];

}

This is flawed as tokens are created with custom decimals in createBridgeToken

function createBridgeToken(string memory name, string memory symbol,
uint8 decimals, uint256 cap, address admin, bytes32 salt)
external override onlyRole(DEFAULT_ADMIN_ROLE)
returns (IBridgeToken token) {
token = new BridgeToken{ salt: salt }(name, symbol, decimals, cap,
admin);
tokenConfigs[token].exists = true;
emit BridgeTokenCreated(token);

}

Eg: A token is created with e6 decimals. Now all realistic token amounts will fall under the

46

https://github.com/yalaorg/yala-notary/blob/d7b1c5f5743e9c23dbd3d2132260d721debab33d/contracts/core/BridgeController.sol#L52-L60
https://github.com/yalaorg/yala-notary/blob/d7b1c5f5743e9c23dbd3d2132260d721debab33d/contracts/core/BridgeController.sol#L41-L45

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

LOW grouping

Recommendations:
If custom token decimals are planned to be created, use the tokens decimals inorder to
categorize rather than hardcoding e18

Yala: Resolved at BridgeController.sol#L58-L67

Zenith: Verified

47

https://github.com/yalaorg/yala-notary/blob/audit-v1.1/contracts/core/BridgeController.sol#L58-L67

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-7] Negative values for prices are currently allowed

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• PriceFeed.sol

Description:
When validating the price it is checked that _response.answer is not equal to 0. Since
_response.answer is of int type this check still allows for negative values

function _isValidResponse(FeedResponse memory _response)
internal view returns (bool) {

return (_response.success) && (_response.roundId /= 0) &&
(_response.timestamp /= 0) && (_response.timestamp <= block.timestamp)
&& (_response.answer /= 0);
}

Recommendations:
Since -ve values doesn't make sense for the application in scope, perform > 0 validation
instead

Yala: Resolved with @4dcc36bee1...

Zenith: Verified.

48

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/PriceFeed.sol#L158
https://github.com/yalaorg/yala-core/commit/4dcc36bee1cc3f7b0cee898ba94b896dd29239d1

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-8] TCR restrictions on withdrawals can cause dependence
on other positions

SEVERITY: Low IMPACT: Low

STATUS: Acknowledged LIKELIHOOD: Low

Target
• BorrowerOperations.sol

Description:
Withdrawals are only allowed if the totalCR of the TroveManager will be greater than CCR
after the withdrawal

function closeTrove(ITroveManager troveManager, uint256 id,
address receiver) external auth(troveManager, id) {

....

if (!troveManager.hasShutdown()) {
uint256 newTCR = _getNewTCRFromTroveChange(vars.totalCollateral

* vars.price, vars.totalDebt + vars.totalInterest, coll * vars.price,
false, vars.compositeDebt, false);

/> _requireNewTCRisAboveCCR(newTCR, vars.CCR);
}

Since each individual position's liquidation ratio (MCR) is lower than CCR, this creates a
scenario of dependence where one trove can be prevented from closing by another trove

Eg: CCR = 1.5 MCR = 1.1

Trove A is created with collateral == 200 and debt == 100 (assume collateral price == 1
and hence CR == 2) Another Trove B is opened with collateral = 120 and debt == 100

Now Trove A cannot be closed because doing so will drop the TCR to 1.2. Nor can B be
liquidated because its CR is above MCR

Recommendations:
Acknowledge

49

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/BorrowerOperations.sol#L163

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Yala: We admit this issue, we may put a deposit when the TCR number is not healthy
enough to unlock this.

Zenith: Acknowledged

50

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-9] Debt repayments cannot be made in case protocol is
paused

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• BorrowerOperations.sol

Description:
In case the protocol is paused, then the adjustTroves function attempts to still allow pure
repayments of debt. But the underlying _adjustTroves will disable this due to it reverting if
the protocol is Paused without handling/specially considering the just debt repayment
scenario

function adjustTrove(ITroveManager troveManager, uint256 id,
uint256 _collDeposit, uint256 _collWithdrawal, uint256 _debtChange,
bool _isDebtIncrease) external {

/> require((_collDeposit /= 0 && !_isDebtIncrease) /| !YALA_CORE.paused(),
"BorrowerOps: Trove adjustments are paused");

require(_collDeposit /= 0 /| _collWithdrawal /= 0, "BorrowerOps:
Cannot withdraw and add coll");

_adjustTrove(troveManager, id, _collDeposit, _collWithdrawal,
_debtChange, _isDebtIncrease);
}

function _adjustTrove(ITroveManager troveManager, uint256 id,
uint256 _collDeposit, uint256 _collWithdrawal, uint256 _debtChange,
bool _isDebtIncrease) internal {

/> require(!YALA_CORE.paused(), "BorrowerOps: Trove adjustments are
paused");

Recommendations:
Be consistent across both pause controls

Yala: Resolved with @5a9ce0a0f8...

51

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/BorrowerOperations.sol#L116-L123
https://github.com/yalaorg/yala-core/commit/5a9ce0a0f873e85caca1bd67c2552d217c1df471

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Zenith: Verified

52

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-10] Short circuiting interest rewards is flawed

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• TroveManager.sol

Description:
In case the collateral and debt difference b/w the snapshot and the current values of the
TroveManager is 0, then the getPendingRewards function assumes that the defaulted
interest to accrue is also 0

function getPendingRewards(uint256 id) public view returns (uint256,
uint256, uint256) {
RewardSnapshot memory snapshot = rewardSnapshots[id];
uint256 coll = L_collateral - snapshot.collateral;
uint256 debt = L_debt - snapshot.debt;
uint256 defaulted = L_defaulted_interest - snapshot.defaultedInterest;
if (coll + debt /= 0 /| !_exists(id)) return (0, 0, 0);

But this is flawed as there can be non-zero interest defaulted while L_collateral and
L_debt doesn't get incremented

POC: price == 1e(5 + 28) (coin == wbtc and hence price decimals == 36 - 8) penaltyRatio
== 0.1e18 singleLiquidation.debtRedistOrJIT == 0 (fully liquidated by Stability pool)
singleLiquidation.interestRedistOrJIT == 0.8e15 now collateral seized == (0.8e15 * (1e18 +
0.1e18)) / 1e33 == 0

Hence L_debt and L_collateral while L_interest will be incremented. This causes this
amount to not be passed on to the troves (those that were opened right before this
liquidation happens). And this defaulted interest will remain as bad debt forever

Recommendations:
Don't short circuit early and always check for delta b/w snapshot interest and the current
interest value

Yala: Resolved on TroveManager.sol#L288-L289

53

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L286
https://github.com/yalaorg/yala-core/blob/ab624a09ed3a10fa447f12e42cd16ab7c41a3df8/contracts/core/TroveManager.sol#L288-L289

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Zenith: Verified

54

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-11] maxSeizedColl value is rounded down in favor of
defaulters

SEVERITY: Low IMPACT: Low

STATUS: Acknowledged LIKELIHOOD: Low

Target
• TroveManager.sol

Description:
The maxSeizedColl value is rounded down. This favors the defaulter instead of the good
behaving troves and will cause the trove to accrued debt with lower compensation given

uint256 maxSeizedColl = (_debtToLiquidate * (DECIMAL_PRECISION + _penaltyRatio))
/ _price;

POC:

POC: price == 1e(5 + 28) (coin == wbtc and hence price decimals == 36 - 8) penaltyRatio
== 0.1e18 debtToLiquidate == 0.8e15 maxSeizedColl == 0

This will cause the troves to accrue more debt for 0 compensation given

Recommendations:
Round up in favor of the troves instead of the defaulter

Yala: Acknowledged.

55

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L430

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-12] Defaulted debt and interest is not updated in case
collateral value remains same

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• TroveManager.sol
• TroveManager.sol

Description:
The defaulted debt and interest is only passed on to the borrowers in case their collateral
snapshot is less than L_collateral

function applyPendingRewards(uint256 id) public returns (uint256 coll,
uint256 debt, uint256 interest) {
Trove storage t = Troves[id];
if (_exists(id)) {

debt = t.debt;
coll = t.coll;
(interest,) = _accrueTroveInterest(id);
if (rewardSnapshots[id].collateral < L_collateral) {

// Compute pending rewards
(uint256 pendingCollateralReward, uint256 pendingDebtReward,

uint256 pendingDefaultedInterest) = getPendingRewards(id);

....
}

_updateTroveRewardSnapshots(id);

This is flawed as defaulted debt and defaulted interest can exist even when L_collateral
remains same:

uint256 maxSeizedColl = (_debtToLiquidate * (DECIMAL_PRECISION
+ _penaltyRatio)) / _price;

POC: price == 1e(5 + 28) (coin == wbtc and hence price decimals == 36 - 8) penaltyRatio

56

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L580-L598
https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L430

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

== 0.1e18 debtToLiquidate == 0.8e15 hence maxSeizedColl == 0

this will cause the L_interest variable to remain the same (unless there was some high
error in previous calculation) while L_debt and L_defaulted_interest will be incremented

Since this defaulted debt and interest will not be passed on to the troves, it will remain as
bad debt to the protocol forever

Recommendations:
Compare corresponding snapshot with L_debt and L_defaulted_interest instead of
returning early

Yala: Resolved with @ab624a09ed...

Zenith: Verified. Now all three are compared instead of just the collateral snapshot

57

https://github.com/yalaorg/yala-core/commit/ab624a09ed3a10fa447f12e42cd16ab7c41a3df8
https://github.com/yalaorg/yala-core/blob/ab624a09ed3a10fa447f12e42cd16ab7c41a3df8/contracts/core/TroveManager.sol#L586

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.5 Informational

A total of 2 informational findings were identified.

[I-1] computeNewStake always return 1:1 ratio

SEVERITY: Informational IMPACT: Informational

STATUS: Acknowledged LIKELIHOOD: Low

Target
• TroveManager.sol

Description:
The totalCollateralSnapshot and totalStakesSnapshot variables are never updated.
Hence the _computeNewStake function always return 1:1 ratio

function _computeNewStake(uint256 _coll) internal view returns (uint256) {
uint256 stake;
if (totalCollateralSnapshot /= 0) {

stake = _coll;
} else {

/*
* The following assert() holds true because:
* - The system always contains /= 1 trove
* - When we close or liquidate a trove, we redistribute the pending

rewards, so if all troves were closed/liquidated,
* rewards would've been emptied and totalCollateralSnapshot would be

zero too.
*/
stake = (_coll * totalStakesSnapshot) / totalCollateralSnapshot;

}
return stake;

}

58

https://github.com/yalaorg/yala-core/blob/db4ff1248d7017a53ad3304222ba54296a0c6fa0/contracts/core/TroveManager.sol#L630-L644

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:
Yala: Resolved with @3440fd8ab1c... and @9d692df85ef...

Zenith: Verified

59

https://github.com/yalaorg/yala-core/commit/3440fd8ab1cd86290ebef4e9b39f4ba4e801132c
https://github.com/yalaorg/yala-core/commit/9d692df85ef121f99e18bb50b600b0adfe8a0131

YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[I-2] User can bypass buy and sell fee in PSM

SEVERITY: Informational IMPACT: Informational

STATUS: Resolved LIKELIHOOD: Low

Target
• PSM.sol#L86
• PSM.sol#L91

Description:
When users call buy or sell, the estimateBuy and estimateSell functions calculates the
fee they need to pay.

function estimateBuy(uint256 amountDebtToken)
public view override returns (uint256 amountPegTokenUsed, uint256 fee) {

>>> fee = (amountDebtToken * feeIn) / DECIMAL_PRECISIONS;
amountPegTokenUsed = (amountDebtToken + fee) / priceFactor;

}

function estimateSell(uint256 amountDebtToken)
public view override returns (uint256 amountPegTokenReceived,
uint256 fee) {

>>> fee = (amountDebtToken * feeOut) / DECIMAL_PRECISIONS;
amountPegTokenReceived = (amountDebtToken - fee) / priceFactor;

}

However, due to the lack of a minimum amountDebtToken, users can provide an
amountDebtToken that results in a fee of 0.

Recommendations:
Consider checking the minimum amountDebtToken or reverting when the configured
feeIn/feeOut is non-zero but the calculated fee results in 0.

Yala: Resolved with @e5d794ced1...

Zenith: Verified.

60

https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/PSM.sol#L86
https://github.com/yalaorg/yala-core/blob/audit-v1/contracts/core/PSM.sol#L91
https://github.com/yalaorg/yala-core/commit/e5d794ced1c164b0f651fcc8f1155a92991e266a

	Introduction
	About Zenith
	Disclaimer
	Risk Classification

	Executive Summary
	About Yala
	Scope
	Audit Timeline
	Issues Found

	Findings Summary
	Findings
	Critical Risk
	High Risk
	Medium Risk
	Low Risk
	Informational

