
Yala
Smart Contract
Security Assessment
VERSION 1.1

AUDIT DATES:

AUDITED BY:

March 17th to March 18th, 2025
10xhash
said



YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Contents 1 Introduction 2

1.1 About Zenith 3

1.2 Disclaimer 3

1.3 Risk Classification 3

2 Executive Summary 3

2.1 About Yala 4

2.2 Scope 4

2.3 Audit Timeline 5

2.4 Issues Found 5

3 Findings Summary 5

4 Findings 6

4.1 Medium Risk 7

4.2 Low Risk 9

4.3 Informational 16

2



YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

1
Introduction

1.1 About Zenith

Zenith is an offering by Code4rena that provides consultative audits from the very best
security researchers in the space. We focus on crafting a tailored security team specifically
for the needs of your codebase.

Learn more about us at https://code4rena.com/zenith.

1.2 Disclaimer

This report reflects an analysis conducted within a defined scope and time frame, based on
provided materials and documentation. It does not encompass all possible vulnerabilities
and should not be considered exhaustive.

The review and accompanying report are presented on an "as-is" and "as-available" basis,
without any express or implied warranties.

Furthermore, this report neither endorses any specific project or team nor assures the
complete security of the project.

1.3 Risk Classification

SEVERITY LEVEL IMPACT: HIGH IMPACT: MEDIUM IMPACT: LOW

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

3

https://code4rena.com/zenith


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

2
Executive Summary

2.1 About Yala

Yala is a liquidity layer for Bitcoin, unlocking Bitcoin liquidity and connecting it to
cross-chain yield opportunities.

2.2 Scope

The engagement involved a review of the following targets:

Target yala-core

Repository https://github.com/yalaorg/yala-core

Commit Hash 19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6

Files crsm/CRSM.sol
crsm/CRSMFactory.sol
oft/DebtTokenOFT.sol

4

https://github.com/yalaorg/yala-core


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

2.3 Audit Timeline

March 17, 2025 Audit start

March 18, 2025 Audit end

March 21, 2025 Report published

2.4 Issues Found

SEVERITY COUNT

Critical Risk 0

High Risk 0

Medium Risk 2

Low Risk 4

Informational 1

Total Issues 7

5



YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

3
Findings Summary

ID Description Status

M-1 DEBT_GAS_COMPENSATION can be instantly updated
causing users to suffer losses

Resolved

M-2 DEBT_GAS_COMPENSATION can be instantly updated
causing users to suffer losses

Resolved

L-1 strict TARCR check inside the repay operation might cause
an issue.

Resolved

L-2 Token Id Front-Running Potential Issue Resolved

L-3 Not considering stability pool yield and debt token balance
inside CSRM during the repay operation

Resolved

L-4 Excess assets can be withdrawn from the StabilityPool due
to not considering minNetDebt

Resolved

I-1 CRSM ownership is not tied to the minted ERC721 within
the factory.

Resolved

6



YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4
Findings

4.1 Medium Risk

A total of 2 medium risk findings were identified.

[M-1] DEBT_GAS_COMPENSATION can be instantly updated
causing users to suffer losses

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• CRSM.sol

Description:
Users are incentivized to invoke repay as DEBT_GAS_COMPENSATION is paid as reward. But the
owner of CRSM contract can update this value instantly thereby changing the reward
received by the invoker

function setDebtGasCompensation(uint256 _debtGasCompensation)
external onlyOwner {
DEBT_GAS_COMPENSATION = _debtGasCompensation;
emit DebtGasCompensationUpdated(_debtGasCompensation);

}

Eg: User spends 10$ in gas to invoke repay since currently DEBT_GAS_COMPENSATION is
20 Owner front-runs and sets DEBT_GAS_COMPENSATION to 0. Now the user will suffer
a loss and owner can benefit from paying a lower gas amount (compared to himself
invoking repay)

Recommendations:
Enforce a time delay on the update

Yala: Resolved with @9fbaa62fa8...

Zenith: Verified.

7

https://github.com/yalaorg/yala-core/blob/19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6/contracts/crsm/CRSM.sol#L107-L110
https://github.com/yalaorg/yala-core/commit/9fbaa62fa83645456165020710136e4c3e6a4635


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[M-2] DEBT_GAS_COMPENSATION can be instantly updated
causing users to suffer losses

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• CRSM.sol

Description:
Users are incentivized to invoke repay as DEBT_GAS_COMPENSATION is paid as reward. But the
owner of CRSM contract can update this value instantly thereby changing the reward
received by the invoker

function setDebtGasCompensation(uint256 _debtGasCompensation)
external onlyOwner {
DEBT_GAS_COMPENSATION = _debtGasCompensation;
emit DebtGasCompensationUpdated(_debtGasCompensation);

}

Eg: User spends 10$ in gas to invoke repay since currently DEBT_GAS_COMPENSATION is
20 Owner front-runs and sets DEBT_GAS_COMPENSATION to 0. Now the user will suffer
a loss and owner can benefit from paying a lower gas amount (compared to himself
invoking repay)

Recommendations:
Enforce a time delay on the update

Yala: Resolved with @9fbaa62fa8...

Zenith: Verified.

8

https://github.com/yalaorg/yala-core/blob/19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6/contracts/crsm/CRSM.sol#L107-L110
https://github.com/yalaorg/yala-core/commit/9fbaa62fa83645456165020710136e4c3e6a4635


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.2 Low Risk

A total of 4 low risk findings were identified.

[L-1] strict TARCR check inside the repay operation might cause
an issue.

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• CRSM.sol#L63

Description:
Inside repay operation, it will always check that the new ICR must always greater than
TARCR.

function repay(uint256 amount) external {
ITroveManager.Trove memory trove

= troveManager.getCurrentTrove(troveId);
uint256 entireDebt = trove.debt + trove.interest;
require(amount <= entireDebt, "CRSM: Too much debt to repay");
uint256 price = troveManager.fetchPrice();
uint256 ICR = YalaMath._computeCR(trove.coll, entireDebt, price);
require(ICR <= TRGCR, "CRSM: ICR must be below TRGCR");
uint256 deposits

= stabilityPool.getCompoundedDebtDeposit(address(this));
require(amount + DEBT_GAS_COMPENSATION <= deposits, "CRSM:

Insufficient deposits");
stabilityPool.withdrawFromSP(amount + DEBT_GAS_COMPENSATION);
borrowerOperations.repay(troveManager, troveId, amount);
trove = troveManager.getCurrentTrove(troveId);
uint256 newICR = YalaMath._computeCR(trove.coll, trove.debt

+ trove.interest, price);
>>> require(newICR >= TARCR, "CRSM: ICR /= TARCR");

require(newICR <= MAX_TARCR, "CRSM: ICR /= MAX_TARCR");
IERC20(debtToken).safeTransfer(msg.sender, DEBT_GAS_COMPENSATION);
emit Repay(troveManager, troveId, amount);

9

https://github.com/yalaorg/yala-core/blob/19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6/contracts/crsm/CRSM.sol#L63


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

}

This could cause an issue in the case where all compounded debt deposits inside the
stability pool have already been withdrawn, but the TARCR still cannot be reached. This
prevents the use of debt tokens inside the stability pool to improve the trove's ICR.

Recommendations:
consider checking newICR against TARCR only if the repay operation does not use all
compounded debt deposits.

Yala: Resolved with @d422097fc23...

Zenith: Verified.

10

https://github.com/yalaorg/yala-core/commit/d422097fc23355848ad8af3fded394c76ca05550


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-2] Token Id Front-Running Potential Issue

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• CRSMFactory.sol#L31-L46

Description:
When creating new CRSM inside factory, the crsm address salt only based on tokenId.

function createNewCRSM(ITroveManager troveManager, uint256 troveId,
uint256 _TRGCR, uint256 _TARCR, uint256 _MAX_TARCR,
uint256 _debtGasCompensation, uint256 _amount)
external returns (ICRSM crsm) {

address collateralToken
= address(borrowerOperations.collateraTokens(troveManager));

require(collateralToken /= address(0), "CRSMFactory: nonexistent
TM");

address owner = troveManager.ownerOf(troveId);
require(msg.sender /= owner, "CRSMFactory: not trove owner");
uint256 tokenId = nonce++;
address implementation = crsmImpl;

>>> crsm = ICRSM(implementation.cloneDeterministic(bytes32(tokenId)));
crsm.setParameters(troveManager, troveId, owner, _TRGCR, _TARCR,

_MAX_TARCR, _debtGasCompensation);
crsms[tokenId] = crsm;
_mint(owner, tokenId);
if (_amount > 0) {

deposit(crsm, _amount);
}
emit NewCRSMDeployment(troveManager, troveId, tokenId, crsm);

}

This is open front-running attack vector :

1. Alice initiates a transaction to create a new CRSM with tokenId N and and create
separate deposit tx to the pre-calculated crsm address using tokenId N.

11

https://github.com/yalaorg/yala-core/blob/19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6/contracts/crsm/CRSMFactory.sol#L31-L46


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

2. Bob sees this pending transaction

3. Bob front-run and create the CRSM with the tokenId N

4. Alice deposit is executed and wrongly send the debt token to the bob's crsm.

Recommendations:
Consider also incorporating msg.sender for the salt.

Yala: Resolved with @5e7c7f4665...

Zenith: Verified

12

https://github.com/yalaorg/yala-core/commit/5e7c7f466551647f101f975d2fc7de7c4901c889


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-3] Not considering stability pool yield and debt token
balance inside CSRM during the repay operation

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Medium

Target
• CRSM.sol#L50-L67

Description:
When the repay operation is called, it will attempt to withdraw debt tokens from the
stability pool and use them to repay the debt. However, it does not consider the potential
debt tokens accrued from the stability pool or, in edge cases, the debt token balance inside
the CSRM.

Not accounting for these factors could cause issue for trove position in cases where the
compounded debt deposited in the stability pool is insufficient to cover the repayment
operation, preventing the ICR from reaching the TARCR.

Recommendations:
Consider to utilize accrued yield and debt token balance inside the CSRM when repay
operation is called.

Yala: Resolved with @25e6858a9db...

Zenith: Verified

13

https://github.com/yalaorg/yala-core/blob/19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6/contracts/crsm/CRSM.sol#L50-L67
https://github.com/yalaorg/yala-core/commit/25e6858a9db4090e3761d54b25176f959142bae8


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-4] Excess assets can be withdrawn from the StabilityPool
due to not considering minNetDebt

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Medium

Target
• CRSM.sol

Description:
The repay function allows for amount to be trove.debt + trove.interest. But since
actual repayment function limits the repayable debt amount to trove.debt - minNetDebt.
This can cause excess tokens to be withdrawn from the stability pool and left idle in the
CSRM contract

function repay(uint256 amount) external {
ITroveManager.Trove memory trove
= troveManager.getCurrentTrove(troveId);
uint256 entireDebt = trove.debt + trove.interest;
require(amount <= entireDebt, "CRSM: Too much debt to repay");
uint256 price = troveManager.fetchPrice();
uint256 ICR = YalaMath._computeCR(trove.coll, entireDebt, price);
require(ICR <= TRGCR, "CRSM: ICR must be below TRGCR");
uint256 deposits
= stabilityPool.getCompoundedDebtDeposit(address(this));
require(amount + DEBT_GAS_COMPENSATION <= deposits, "CRSM: Insufficient
deposits");
stabilityPool.withdrawFromSP(amount + DEBT_GAS_COMPENSATION);
borrowerOperations.repay(troveManager, troveId, amount);

(vars.collChange, vars.isCollIncrease) = _getCollChange(_collDeposit,
_collWithdrawal);

if (!_isDebtIncrease && _debtChange > 0) {
if (_debtChange > (vars.debt - minNetDebt)) {

vars.debtChange = vars.debt - minNetDebt;
_debtChange = _debtChange - vars.debtChange;
vars.interestRepayment = YalaMath._min(_debtChange, vars.interest);

14

https://github.com/yalaorg/yala-core/blob/19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6/contracts/crsm/CRSM.sol#L50-L60


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:
Only allow repayment of trove.debt + trove.interest - minNetDebt amount

Yala: Resolved with @701be9f50e...

Zenith: Verified

15

https://github.com/yalaorg/yala-core/commit/701be9f50e77d80a373fb5062e13671bc003af11


YALA SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.3 Informational

A total of 1 informational findings were identified.

[I-1] CRSM ownership is not tied to the minted ERC721 within
the factory.

SEVERITY: Informational IMPACT: Informational

STATUS: Resolved LIKELIHOOD: Low

Target
• CRSM.sol
• CRSMFactory.sol#L62-L66

Description:
When a new CRSM is created via the factory contract, a new ERC721 token is minted to the
owner. However, the ownership of this ERC721 token and the ownership of the crsm
contract (implemented using OpenZeppelin's Ownable) are not tied together. This means a
user can transfer ownership of the crsm contract or transfer ownership of the ERC721
token without affecting the other.

Recommendations:
Consider designing it more clearly by either removing the ERC721 token functionality inside
the factory or adjusting the crsm access control to use ERC721 ownership.

Yala: Resolved with @efa364342d7...

Zenith: Verified.

16

https://github.com/yalaorg/yala-core/blob/19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6/contracts/crsm/CRSM.sol
https://github.com/yalaorg/yala-core/blob/19f227ebc31a2c6cb23bb5492d5b9a5f2160caa6/contracts/crsm/CRSMFactory.sol#L62-L66
https://github.com/yalaorg/yala-core/commit/efa364342d743e2c02e236c762be4179a6c54b0c

	Introduction
	About Zenith
	Disclaimer
	Risk Classification

	Executive Summary
	About Yala
	Scope
	Audit Timeline
	Issues Found

	Findings Summary
	Findings
	Medium Risk
	Low Risk
	Informational


