Yala: A Bitcoin-Based Asset Protocol

Yala Labs

November 26, 2024

ABSTRACT

The Yala Protocol introduces a new method to unlock the programmability of BTC assets, focusing on developing the DeFi layer
within the Bitcoin ecosystem. It addresses challenges like Bitcoin’s limited scripting language and scalability issues. Yala’s architec-
ture includes layers for application, consensus, data availability, execution, and settlement, enabling DeFi transactions while preserv-
ing Bitcoin’s security. The protocol integrates over-collateralized stablecoin mechanisms, insurance derivatives, and atomic swaps
for seamless interaction across blockchain systems, expanding Bitcoin’s potential beyond digital currency use to DeFi and complex

applications.

Key words. BTC, DeFi, Stablecoin, Atomicswap, Insurance, Data Availability, Custodial mapping, Custody

1. Introduction

Bitcoin has emerged as the eighth-largest asset globally, with its
valuation and security mechanisms universally recognized. De-
spite its acclaim, Bitcoin’s utilization has predominantly been as
a primary digital currency. Before Ethereum’s advent, numerous
endeavors aimed to extend Bitcoin’s utility beyond mere cryp-
tocurrency applications, albeit these were largely experimental
due to Bitcoin’s intrinsic limitations.

The advent of Ethereum, with its Turing-complete smart con-
tracts, marked a significant shift in the blockchain ecosystem.
Ethereum’s smart contract functionality enabled the develop-
ment of decentralized applications (dApps) that go beyond sim-
ple value transfer, encompassing a wide range of use cases such
as decentralized finance (DeFi), non-fungible tokens (NFTs),
and decentralized autonomous organizations (DAOs). This ex-
panded programmability facilitated the implementation of com-
plex logic and state transitions on the blockchain, in contrast to
Bitcoin’s more limited scripting capabilities.

As a result, most of the subsequent complex logic imple-
mentations after Ethereum’s launch took place on the Ethereum
network and other newer blockchains. The approval of Bitcoin
exchange-traded funds (ETFs) underscored a pivotal moment,
heralding traditional finance’s acknowledgment of cryptocur-
rency value. This necessitated Bitcoin to introduce compatible fi-
nancial products to enhance its appeal and broaden its user base.

As of now (from DeFiLlama'), Bitcoin’s Total Locked Value
(TVL) is a mere $2.8 billion, in the contrast to its market capital-
ization of $1.8 trillion, and significantly dwarfed by the $97 bil-
lion TVL across various blockchain networks. Despite holding
a 51.9% market share, Bitcoin’s representation in the DeFi TVL
is relatively small. This scenario underscores the vast potential
for DeFi within the Bitcoin ecosystem, signifying a crucial tra-
jectory for Bitcoin’s evolution.

DeFi functionalities on Bitcoin primarily utilize the Light-
ning Network, with the RSMC (Revocable Sequence Maturity
Contract) and HTLC (Hashed Timelock Contract) protocols fa-
cilitating peer-to-peer transactions and off-chain transaction ex-
ecutions on Bitcoin. The challenges in deploying complex logic

" https://defillama.com/chain/Bitcoin

applications on Bitcoin are primarily attributed to its scripting
language, characterized by a lack of Turing completeness and
scalability issues.

Ethereum’s whitepaper delineated several Bitcoin scripting
deficiencies, including Turing incompleteness, value-blindness,
statelessness, and blockchain unawareness. These limitations are
anticipated to be mitigated through various Bitcoin protocol
enhancements, such as introducing the OP_RETURN opcode in
2014, enabling the incorporation of off-chain states. Subsequent
upgrades like SegWit and Taproot have imparted a degree of Tur-
ing completeness to Bitcoin. These enhancements, coupled with
an off-chain execution layer interacting with scripted contracts
in the Witness component, can refine Bitcoin’s computational
capabilities, encompassing most of Bitcoin’s Layer 2 solutions.

This article introduces the solutions proposed by Yala Fi-
nance for implementing complex transactions based on BTC as-
sets. We analyze existing BTC Layer 2 solutions and the issues
they face. The Yala Protocol presents a novel approach to un-
lock the programmability of BTC assets, focusing on developing
a DeFi layer within the Bitcoin ecosystem. The protocol aims
to overcome the challenges of conducting complex transactions
using Bitcoin’s native assets, such as its limited scripting lan-
guage and scalability issues. Yala’s architecture includes an Ap-
plication Layer, Consensus & Data Availability Layer, Execu-
tion Layer, and Settlement Layer, enabling native DeFi transac-
tions for BTC assets while maintaining the security and consen-
sus of the Bitcoin network. The Yala Protocol considers existing
feasible solutions for complex transactions involving BTC as-
sets, mitigating risks in cross-chain asset mapping through key
management, decentralized asset custody, and one-time signa-
tures, making the cost of potential attacks outweigh the benefits.
The Yala Finance system features essential components such as
Vaults, an automatic stabilizer, and an insurance module, provid-
ing a comprehensive DeFi ecosystem for BTC assets.

This article also designs a solution for completing the entire
DeFi process on the BTC main chain, implementing a simple
state machine on BTC that requires other blockchains to assist
in the transaction state transition without affecting consensus on
the BTC main chain. The innovative approach of the Yala Pro-
tocol aims to unlock the full potential of the Bitcoin blockchain,

1of 14

https://defillama.com/chain/Bitcoin

extending its utility beyond its primary use as a digital currency
and enabling the integration of DeFi and other complex applica-
tions within the BTC ecosystem.

2. Background
2.1. Challenges for running DeFi on Bitcoin

BTC requires a scalable solution to serve as the infrastructure for
DeFi and even more ecosystem applications. We first consider
what issues a blockchain must solve to run DeFi applications:

Security: The blockchain must ensure robust security to pre-
vent issues such as double-spending, unauthorized modifications
to transaction records, and other malicious activities. High TVL
also reinforces trust in DeFi platforms.

Programmability: Critical for DeFi, the blockchain should
support complex financial transactions and protocols, ensuring
reliable and accessible outcomes from contract executions [6].

High throughput and low transaction costs: DeFi applica-
tions demand high transaction throughput and low costs, neces-
sitating a scalable and efficient infrastructure.

Governance mechanism: A robust governance framework
is crucial for encouraging community involvement, consensus,
and managing updates to the network.

Risk control: The financial risks in DeFi exceed those in
traditional trading, requiring dependable price data sources and
risk mitigation strategies.

Given these prerequisites, Bitcoin’s original design seems
less suitable for the complexities of DeFi. However, potential
solutions include:

1. Bitcoin’s capability to support advanced smart contract logic
has improved with recent upgrades. Using Merkleized Ab-
stract Syntax Trees (MAST), DeFi logic can be encapsulated
into scripts within the Witness component, intended for off-
chain node execution rather than on the main chain.

2. Capitalizing on Bitcoin’s unmatched security, DeFi transac-
tions could be streamlined to Unspent Transaction Output
(UTXO) transactions against Pay to Taproot Hash (P2SH)
addresses, ensuring secure settlements for DeFi contracts. In-
corporating yield farming concepts could encourage Bitcoin
users to contribute their assets, enhancing TVL.

3. Considering the high transaction fees and prolonged block
times on the Bitcoin network, limiting throughput, a signif-
icant portion of DeFi transactions should be processed off-
chain. Bitcoin would then finalize the settlements, ensuring
consensus and security.

4. Implementing governance mechanisms for DeFi community
members is crucial for protocol governance, network up-
grades, and parameter settings within the Bitcoin ecosystem.

5. Bitcoin’s volatility, accentuated by its 10-minute block inter-
vals, increases risk in its DeFi ecosystem compared to other
chains, necessitating reliable oracles for price feeds and ef-
fective risk management measures.

6. Introducing a Bitcoin-native stablecoin could significantly
stabilize liquidity in DeFi applications, serving various roles,
including lending, hedging, and settlements.

2.2. Existing solutions

There are various proposed solutions for expanding Bitcoin to
support complex applications such as DeFi, primarily Bitcoin
Layer 2 solutions taking the form of rollups or EVM-compatible
sidechains with similar underlying approaches. Rollup solutions

20f 14

generate fraud or validity proofs for off-chain transaction execu-
tion, solutions that are then validated by publishing the proofs to
scripts within Bitcoin’s Taproot witness data. At the same time,
the EVM sidechain approach involves launching a new EVM-
compatible blockchain network that interacts with the Bitcoin
mainchain cross-chain. However, practical roll-up implementa-
tions face challenges, including constraints on proof complexity
due to limited witness data size. Additionally, posting data on
Bitcoin’s blockchain does not automatically ensure the authen-
ticity of off-chain roll-up transactions. As a result, most current
Bitcoin rollup projects opt for a "sovereign rollup” or "client val-
idation model" where validators synchronize and validate the en-
tire rollup state data off-chain, failing to leverage Bitcoin’s con-
sensus and security model, exemplified by the client-validated
RGB protocol.

A practical rollup strategy involves leveraging the BTC net-
work to validate transaction commitments. It’s crucial also to
have mechanisms that ensure assets within the rollup can be
safely accessed or recovered during unexpected incidents or sys-
tem breakdowns, even when rollup nodes/sorters are unavailable
or decline transactions. A secure emergency channel allows for
the retrieval of assets. BitVM, integrating fraud proofs with Tap-
root’s MAST scripts, is a notable solution many rollup projects
adopt. However, BitVM’s major drawback is its absence of an
emergency asset release feature, posing a risk of asset loss in the
event of attacks or failures.

Besides the direct Bitcoin expansion BTC L2 solutions,
DLC.link proposed a different solution, mapping BTC to
Ethereum L2 based on the DLC protocol, to participate in the
ETH DeFi ecosystem as dicBTC. This only provides cross-chain
interoperability for Bitcoin, relying on the security and consen-
sus of other chains, not exploiting the characteristics of the BTC
ecosystem. However, the use of Discreet Log Contracts (DLCs)
is a very valuable BTC contract primitive, essentially a condi-
tion judgment between transaction parties, determining the final
direction of funds based on an agreement by two or more par-
ties on the outcome of a specific event chosen by one or multiple
oracles.

We believe native DeFi applications and other ecosystem ap-
plications for Bitcoin should be built directly utilizing Bitcoin’s
native asset types, including BTC itself, Atomical tokens, Tap-
root Assets, Omni Layer tokens, and more, with data structures
encoded either in OP_RETURN outputs or through OP_FALSE
OP_IF...OP_ENDIF script constructs within the witness data
exhibiting similar formats. These diverse native asset encodings
can be unified under the "inscriptions" model enabled by the Or-
dinals protocol, providing a standardized format for associating
arbitrary data with satoshis and storing this content off-chain in
Taproot script-path spend scripts. Building upon inscriptions al-
lows layering more complex business logic onto oftf-chain Prover
servers, such as introducing new operational primitives like
"list", "collateralize", "destroy", "authorize" alongside "mint",
"deploy", and "transfer" under the inscription JSON "op" field,
with combinations evolving into higher-level functionalities like
swaps, lending, inscribed financial instruments ("Inscription-
Fi"), and even complex decentralized applications spanning so-
cial networks and gaming ("SocialFi" and "GameFi") - thereby
standardizing Bitcoin’s native assets into a richly extensible
framework for native DeFi and broader applications deeply inte-
grated with Bitcoin itself.

The Yala Protocol is a proposed solution that addresses
the challenges of implementing complex transactions using Bit-
coin’s native assets. Yala draws on the concept of decoupling to
apply it to the Bitcoin ecosystem, leveraging the security of the

Yala Labs: Yala: A Bitcoin-Based Asset Protocol

BTC network and the Turing-completeness of other blockchains.
Yala’s native operability aims to realize the programmability of
BTC assets, and the protocol plans to first implement a DeFi
layer on Bitcoin based on this theoretical architecture.

2.3. Native operability and interoperability on Bitcoin

We evaluated the limitations and reference technologies of cur-
rent solutions. Taproot’s MAST enables complex transaction
logic on Bitcoin, while DLCs streamline transaction processes
by moving most operations off-chain, ensuring both security and
privacy. Leveraging these technologies, transaction contracts are
stored similarly to Ordinals, facilitating direct on-chain storage
and off-chain execution by nodes. This approach allows con-
tracts to be executed like Ordinals, blending efficiency with
blockchain integrity.

This approach maintains the intrinsic qualities of Bitcoin as-
sets in DeFi, addressing the need for high throughput and cost
efficiency. In DeFi’s multifaceted transaction processes, BTC
doesn’t have to be involved in every step. The primary value
of the BTC main chain in executing contracts lies in its secu-
rity and consensus capabilities. Therefore, we should preserve
these aspects while separating all other system functions from
BTC. A modular approach allows us to extend Layerl function-
alities, enhancing main chain scalability. By decoupling system
functions and strategically distributing tasks across modules, we
significantly boost system throughput and concurrently reduce
transaction costs.

Blockchain interoperability allows for the sharing of infor-
mation and value across different blockchain networks, facilitat-
ing direct interaction between users and developers with multiple
platforms. The aim of achieving Bitcoin interoperability is to en-
able those holding BTC to leverage their assets in transactions on
other blockchains without selling. These methods include cross-
chain bridges, atomic swaps, and relay chains. A key challenge is
conducting transactions with BTC assets on other chains without
significantly burdening BTC’s resources. Thus, mapping BTC
assets for use on trusted alternative blockchains presents a vi-
able strategy for providing BTC interoperability, though it’s not
without its challenges.

Most Bitcoin Layer 2 solutions utilize cross-chain bridges,
where security hinges on creating cryptographic proofs off-chain
that are later verified on the Bitcoin blockchain. This approach,
however, runs into considerable difficulties, especially because
the Bitcoin script language, designed for simplicity and secu-
rity, isn’t well-suited for complex verifications. This limitation
raises concerns about the practicality of efficiently executing
these advanced verification processes within Bitcoin’s existing
framework. Furthermore, coordinating emergency risk manage-
ment across different blockchains adds layers of complexity to
these systems. L2 projects are exploring the reactivation of the
OP_CAT operator to enhance data interaction capabilities, but this
move could inadvertently increase the risk of Distributed Denial
of Service (DDoS) attacks, adding another dimension of con-
cern.

Another approach is Drivechain, whose idea was detailed
in two proposals: BIP 300, involving a system called Hashrate
Escrows, and BIP 301, related to Blind Merged Mining.
The Drivechain proposal aimed to let developers customize
sidechains and use Bitcoin locked on the main blockchain to
manage assets on these sidechains. However, neither BIP 300
nor BIP 301 received the necessary implementation approval.
As a result, the Drivechain approach is generally regarded as un-
reliable.

Atomic swaps facilitate direct cryptocurrency exchanges be-
tween two parties on the Bitcoin network, leveraging its script
language without needing a central authority or intermediary.
This process uses special types of scripts, such as those found in
Hashed Timelock Contracts (HTLCs) within the Lightning Net-
work. These scripts ensure that transactions can only be com-
pleted if certain conditions are met, creating a secure and trust-
less exchange mechanism. While atomic swaps offer a decentral-
ized way to trade cryptocurrencies, they face challenges like the
"replacement cycle attack," which questions the security of the
Lightning Network. Despite these concerns, atomic swaps are a
significant advancement for peer-to-peer transactions.

2.4. Bitcoin’s State Transfer

In December 2023, Robin Linus, the head of the ZeroSync
project, published a whitepaper titled "BitVM: Compute Any-
thing On Bitcoin", sparking thoughts on enhancing Bitcoin’s
programmability. The paper proposes a solution to achieve
Turing-complete Bitcoin contracts without altering the Bitcoin
network’s consensus, allowing any complex computation to be
verified on Bitcoin. This solution uses Lamport signatures (i.e.,
bit commitment) to transfer the state between UTXOs. Lamport
signatures can validate complex transaction processes and guar-
antee that the actual signed content cannot be tampered with un-
der any attack. However, in the BitVM solution, the standard
Lamport signature size is 8192 bytes, and with additional re-
quired metadata, the signature size exceeds 8860 bytes, while the
witness stack size is only 2121 bytes. Therefore, BitVM heavily
relies on OP_CAT to link Lamport signature data, but the use of
OP_CAT makes BTC vulnerable to DDoS attacks, and OP_CAT
has not been considered for reactivation.

Lamport signatures are a type of one-time signature, where
generating a signature for each message requires generating a
new pair of private and public keys. The private key consists of
256x2 random u256 values arranged in a two-dimensional ma-
trix. The public key is the hash of each u256 in the private key,
forming a two-dimensional matrix. The hash function can be any
cryptographically secure hash function. Lamport signatures in-
deed provide the effect of mapping a public key to a specific,
tamper-proof value, making it resistant to ambiguity. Based on
this characteristic, Lamport signatures can enable global "key-
value" pair storage on Bitcoin. This key-value pair storage can
transfer data between script programs, splitting large computa-
tions into many independent parts or decoupling complex trans-
action processes into multiple independent steps. Ethan Heilman
discussed a scheme to enhance the security of ECDSA signatures
by using signature length in the Bitcoin-Dev mailing list. Robin
Linus also discussed the rationale for using the signature length
as proof of work in Bitcoin Script in "Proof of Work in Bitcoin
Script". This scheme combines ECDSA with Lamport signatures
to commit to the signature size, and the signature length effec-
tively serves as a proxy for the transaction hash value of the
spending transaction. Repeating this process multiple times can
provide a certain level of cryptographic security. The flaw in this
scheme is that it requires a very high number of signatures for a
single transaction to ensure high security. We can enhance secu-
rity by using a small number of repeated signatures and unrelated
random contents in the signature.

3. Yala architecture

The architecture of Yala Finance is composed of UTXO oper-
ations on the BTC main chain, asset management on the target

3of 14

v

Loan Insurance Stablecoin Restaking Yield Farming
Destination Chain
Asset Management Oracle
Off-chain State | = [| Q ontract
DA | Liquidation | | ; Automatic

@TC Mainnet {7' Cj
e d Locked UTXO
: state change

stabilizer

Vaults module(UTXO)

Y

A

Y

N

Fig. 1. Yala architecture

chain, and a data availability layer. Yala’s entire architecture de-
sign revolves around the UTXO state machine model. We con-
sidered two methods for handling script states on the BTC chain:
1) generating states directly on the BTC main chain using one-
time signatures and 2) mapping BTC assets onto other chains to
manage assets, with final settlement occurring on the main chain.
Yala Finance previously employed a foundational data structure
based on Ordinals, where transaction execution scripts require
transaction requests initiated by participants at the Prover appli-
cation layer. The off-chain state changes occurring during trans-
action execution are then managed and maintained in a global
state by the Prover. This structure stores UTXO states in SegWit,
and state changes are executed in a relatively centralized manner.
We have abandoned this state management method but will still
support SegWit-based BTC assets in the new architecture.

For the operation of UTXO states on the BTC main
chain, we discussed Andrew Poelstra’s proposal-"Script State
From Lamport Signatures[9]". We incorporated Ethan Heilman’s
approach[4] to eliminate dependency on OP_CAT in the signa-
ture verification process. This approach uses one-time signatures
to facilitate state transitions within BTC scripts, while multi-
signature arrangements manage interactions between lenders,
pools, Provers, and Oracle networks. The liquidation process
still requires coordination with other chains to adjust the transfer
addresses of funds and update UTXO states. With this setup, we
have designed vaults directly on the BTC main chain; however,
this method remains experimental. Since BTC scripts lack intro-
spection capabilities for transaction data, complex state changes
within BTC transactions rely on smart contracts from other
chains. In the future, storing encoded data in the Witness may
be possible to allow BTC scripts to track transaction progress
independently.

The second method leverages asset-mapping. Using condi-
tional scripts, BTC assets are locked in UTXOs on the main
chain, while equivalent assets are mapped onto contracts on the
target chain. This allows the receiving contract on the target

4 of 14

chain to perform complex financial operations directly, enabling
users to trade with the mapped assets on that chain. The mapping
process can utilize multisig cross-chain bridges, atomic swaps,
and Discreet Log Contracts (DLCs). We have designed a practi-
cal atomic swap mechanism, which has already been deployed.
However, security for multi-sig cross-chain bridges requires spe-
cial attention.

3.1. Execution processing

Yala Finance divides the Execution Layer into two parts: the
BTC mainnet and the target chain. The UTXO is the core
state storage and the final state transition environment. Multisig-
nature locking scripts determine the unlocking conditions for
UTXOs. Participants engage in the Yala Finance transaction pro-
cess through the Vaults Module. State generation and changes
are managed through one-time signatures during users’ partici-
pation. The unlocking process requires both a liquidation mech-
anism and the involvement of an automated stabilizer. The target
chain’s Asset Management Contract (AMC) is the state storage
and relay environment for complex transactions. Nearly all state
changes in mapped transactions occur within the AMC, which
also assists in state changes for OTS-based UTXO scripts.

Oracle module: Vaults require real-time market price acqui-
sition of collateral assets to determine when conditional execu-
tions are triggered. The Yala Foundation is responsible for main-
taining the Oracle Module and Oracle Security Module (OSM).
The Oracle Module obtains price inputs from off-chain sources.
Off-chain Oracle nodes retrieve necessary data through off-chain
data APIs, format it, and return it to the Oracle Module. To pro-
tect the system from attackers attempting to control the majority
of oracles, Yala Protocol uses the OSM to receive price inputs
rather than directly from oracles. OSM acts as a defense layer
between oracles and the protocol, publishing prices with a 30-
minute delay to allow for emergency defenses in case of ora-

Yala Labs: Yala: A Bitcoin-Based Asset Protocol

cle compromise. The Yala Foundation makes decisions on emer-
gency oracles and the duration of price delays.

YU Vaults Module: $YU is a stablecoin asset initially is-
sued by the Yala Foundation. All issued $YU is immediately de-
posited into the $YU Vaults Module as the Stablecoin Reserve
Pool.

3.2. Application layer

The Application Layer of Yala includes modules for lending, sta-
blecoins, insurance, restaking, and yield farming, with the sta-
blecoin module serving as the foundation of the Yala Finance
system.

Yala’s stablecoin, $YU, uses an over-collateralization mech-
anism. Borrowers can initiate a Loan Module, transferring ex-
cess BTC assets into a UTXO. Automated nodes monitor when
the Loan Module conditions are met. At this point, the corre-
sponding amount of $YU is transferred to the borrower’s ad-
dress. Loan UTXOs can only be initiated by overcollateralized
participants who enter a staking contract with the Yala Mod-
ule. The Oracle network determines pricing for the UTXO. This
same process is applied in the asset-mapping model.

The insurance module is uniquely designed to address the
challenges of long BTC block intervals and high transaction risk.
It implements a decentralized insurance mechanism using Taka-
ful.

In the restaking module, BTC assets are mapped to other
chains via atomic swaps. By expanding the multi-signature chan-
nels in atomic swaps from a 2-of-3 multi-sig to an (n-1)-of-
n multi-sig channel, this method aims to enable a BTC-based
restaking solution.[11].

The yield farming module involves a more complex logi-
cal design and is currently only considered for implementation
within the asset-mapping model.

3.3. Data availability layer

DeFi transactions require high throughput and frequently gener-
ate large amounts of transaction data. Publishing DeFi-generated
data to BTC would incur significant costs; hence, DeFi transac-
tion data cannot be directly stored on BTC. In the Yala system,
off-chain state updates and consensus are achieved by Prover
nodes, which also maintain the security and data availability of
the off-chain state. This approach saves the cost of uploading
data to BTC while providing real-time updates for DeFi states.
Data availability refers to the capability of data stored in
the blockchain network to be effectively accessed and used
by all participating nodes. Unlike data availability in other
blockchains, BTC assets are in UTXO format, comprising two
state changes, and the BTC block interval is long, about 10 min-
utes. When transacting BTC assets, we do not need to deal with
any data related to the said assets. Provers capture the global
state and balance in the form of witness scripts. Thus, the im-
plementation of data availability in Yala only needs to target
off-chain state changes of assets in witness script format, which
Provers maintains. The on-chain state change of UTXO is re-
flected in transfer transactions, which can provide security for
off-chain state changes. The change in the off-chain state will
eventually be reflected in on-chain UTXO transfer transactions,
with BTC’s consensus and security verifying the final state of
asset transactions on Yala. Assuming that Provers are trustwor-
thy and that the final changes in the off-chain state synchronize
with UTXO transactions, the off-chain state’s data availability

can be independent of the BTC main chain. Our challenge is
implementing Provers’ trustworthiness and the secure real-time
update of off-chain states.

Solutions for data availability include Data Availability Sam-
pling (DAS), which has been validated in the EVM ecosystem.
In Yala’s DA layer, we can directly use DAS to reduce verifi-
cation costs; validators only need to randomly download part of
the data blocks to verify that all data is available. Erasure coding
and KZG Polynomial Commitments will also implement DAS
in Yala’s DA layer. The content to be verified by Yala’s DA layer
includes transaction data, the Merkle tree of transaction data,
and Commitments. Transaction data will be directly verified by
Provers, who will also generate the Merkle tree. Provers can also
produce commitments, and we may consider adding dedicated
validators in the future. The proof content will be distributed and
made public for a period set to one month (referencing the stor-
age time of blobs on ETH), during which anyone can verify the
proof content. A specialized project is already in development
for the BTC DA layer solution; Nubit? is a Bitcoin-Native data
availability layer with instant finality. We are considering using
Nubit’s DA layer solution directly to realize Yala’s decentralized
Prover network and DA layer to ensure the trusted premise as-
sumption of Yala’s DA layer Provers.

In addition, considering another performance requirement of
DeFi based on BTC — the secure real-time update of off-chain
states, we have incorporated the Mempool. Mempool is a dy-
namic staging area for unconfirmed transactions, storing infor-
mation related to unconfirmed transactions. BTC’s long block in-
terval could limit DeFi’s TPS (Transactions Per Second). By us-
ing Mempool, Yala can complete interim state changes of DeFi
transactions after Prover consensus, pack multiple DeFi transac-
tions into a batch, compute all state changes within the batch to
aggregate into the final UTXO state change transfer transaction,
and submit it to the BTC main chain for settlement. This pro-
cess is essentially an off-chain state change Rollup, except that
its verification process is executed off the BTC chain, ultimately
reflected as a UTXO transaction on the BTC main chain.

3.4. Settlement layer

The BTC main chain finalizes transactions. We ultimately at-
tribute the security of complex DeFi logic to the security of
UTXO transactions, successfully relying on BTC’s consensus
and security and utilizing BTC’s maintenance of the UTXO state
ledger as the system’s transaction state data availability.

4. BTC Assets State Machine Model

The asset state definition and transition are essential to imple-
ment complex DeFi transaction logic on BTC. We discussed
state management models suited to different DeFi protocols, not-
ing that both models can complement each other without con-
flict. Since BTC’s mainnet operates on the UTXO model, we
define simple UTXO script states using a Lock-Unlock mecha-
nism. Within various state types, Yala will employ one-time sig-
natures with multisig. The BTC Asset State Machine Model out-
lines the lifecycle of BTC assets through deposit, transfer, lock,
liquidation, and redemption stages, along with their state transi-
tions.

2 Nubit: Bitcoin-Native Data Availability Layer with Instant Finality

5of 14

https://drive.google.com/file/d/1HEcLB8fjW7Sabn_AJap9syEhWDCJs1-R/view

Shared multi-signature address Locked UTXO

)

Bitcoin

Repay UTXO Unlock Retrieve Collateral Assets

. Assist
Overcollatesalization ‘i in state transition
* O UTXO unlocked to the keeper
Multi-signature ‘en R
L tEmmgy Kepper
Liquidation :
Auctions 5+
_ Oralce Network -t Acsist

Complex state
transition

betting
Deploy a Loan UTXO

/

Collateral BTC Assets

Destination

*
.
.

in state transition

chain

\J

Mapped assets

Asset Managemen;

<

Contract Burn the mapped assets

Fig. 2. Yala Loan protocol state machine

4.1. State Types

The main states of UTXOs (Unspent Transaction Outputs) cur-
rently include Unspent, Spent, Locked, and Pending. The Un-
spent and Spent states are the basic transaction statuses. Unspent
is the initial state of a UTXO, meaning that the output has not yet
been used and can be used as an input to construct a new transac-
tion. Unspent TXOs are stored as key-value pairs in the UTXO
pool. When a UTXO is used as an input for a new transaction, it
is marked as "Spent." Once spent, the UTXO becomes unavail-
able and cannot be used for future transactions. When a UTXO is
spent, the code removes the UTXO from the UTXO set, meaning
that the UTXO is no longer recorded in the UTXO set, indicat-
ing that it has been spent. Pending is when a new transaction is
created that includes a UTXO as input, putting the UTXO into a
"Pending" state until the transaction is confirmed by miners and
recorded on the blockchain. Once the transaction is confirmed,
the UTXO state is updated to "Spent."

The Locked state is not directly reflected by the standard
UTXO definition but rather by additional conditions (such as
time locks, multi-signature, etc.). Although these UTXOs appear
unspent on the blockchain, they are restricted by specific situa-
tions and cannot be spent until those conditions are met. The out-
put in a user-initiated transaction includes a locking script (i.e.,
‘scriptPubKey), which defines the conditions required to spend
that UTXO. This could be a simple address (like P2PKH) or
more complex conditions (such as P2SH, P2WPKH, Tapscript,
multi-signature, etc.).

The Locked state is controlled by scripts in UTXO using
the Script language. The Script language is a stack-based lan-
guage without loops and complex flow control, ensuring it is not
Turing complete. This reduces complexity and makes execution
time predictable, avoiding denial-of-service attacks (as all full
nodes verify each transaction) due to infinite loops or other logic
flaws. Consequently, UTXO scripts have no variables, memory,
or persistent state information. Each Script execution process is
independent and cannot rely on previous execution results.

4.2. Implementation of Complex States

Yala Finance implements a complex BTC asset state machine
model based on UTXO Script. The main implementation idea
of Yala Finance is to use a Locked UTXO to map BTC as-
sets onto other stateful blockchains to achieve complex trans-
action logic. The main methods of asset mapping include multi-

6 of 14

signature, lightweight proofs, witnesses, sidechains, relays, dis-
tributed keys, atomic swaps, etc. Among these, multi-signature
and atomic swaps are relatively suitable for implementation
within the UTXO model. The asset mapping process effectively
locks BTC assets in a UTXO, allowing users to obtain corre-
sponding assets on the target chain. The unlocking condition
of this UTXO is the completion of the relative settlement of
the locked assets on the target chain. The assets on the tar-
get chain can undergo complex state transformations, with their
value level and final settlement tied to the UTXO on the BTC
main chain.

Yala Finance also explores the implementation of a com-
plex state machine on the BTC main chain. One-time signatures
have an anti-ambiguity property, allowing the public key to be
mapped into a concrete, immutable value. Users can use pub-
lic keys to sign UTXOs with different preimages. During script
execution, a state value is passed on the stack. For example, in
the following Script code, if a signature corresponding to the
preimage of ‘hashl‘ is provided, the signature will be verified,
leaving the value ‘1° on the stack. If a signature corresponding
to the preimage of ‘hashO°‘ is provided, it will be verified, leav-
ing the value ‘0° on the stack. Alternatively, the preimage can be
revealed by verifying the bit value, executing the corresponding
unlocking script.

OP HASH160

OP DUP

<0xf592e757267b7....>// This is hashl
OP EQUAL

OP DUP

OP ROT

<0x100b9f19ebd53....>// This is hash®
OP EQUAL

OP BOR

OP VERIFY

Passing a 1-bit state value can already enable complex trans-
action logic. Lamport signatures are used in BitVM as a bit com-
mitment, establishing a link between two Bitcoin UTXOs to en-
able stateful Bitcoin scripts. In Taproot addresses, a large pro-
gram is committed, with operators and validators engaging in
extensive off-chain interactions, leaving minimal on-chain foot-
prints. If both parties cooperate, complex oft-chain computation
can be executed without leaving on-chain traces. However, if a
dispute arises, on-chain execution is required. Yala Finance will

Yala Labs: Yala: A Bitcoin-Based Asset Protocol

implement simple conditional scripts on the BTC main chain and
combine multi-signature for basic DeFi applications with other
chains necessary to update the state in the UTXO.

4.3. State Machine on Bitcoin Mainnet

We initiate the collateral lending process on the Bitcoin main
chain using multisig bets. Users first create a Loan UTXO, which
deploys the Yala-provided fund-locking protocol script, with pa-
rameters adjusted based on Oracle and automatic stabilizer feed-
back. The betting party can be a Yala fund management contract
on another chain. Once the Loan UTXO is created, the collat-
eral is locked. After successful locking, Yala contracts on other
chains issue $YU stablecoins to the borrower.

If the user repays the loan, they can unlock the UTXO and
reclaim their collateral. The liquidation process is triggered if the
user fails to repay on time or the collateral value falls below the
liquidation threshold. Keepers participate in liquidation by trans-
ferring funds to the Yala contract to purchase the bad debt. After
triggering liquidation, the UTXO unlocks, and funds are sent to
the Yala contract address. A new multi-sig UTXO is created, and
Yala signs the transaction upon receiving the liquidation funds,
unlocking the UTXO and transferring it to the Keepers.

This state transition process on Bitcoin involves cross-chain
contract cooperation, oracle network supervision, and off-chain
state transfer assistance. The betting process uses one-time sig-
natures to determine the trade’s state, depending on which party
fails the bet. Off-chain state data is transmitted during the liq-
uidation process, requiring further security design and analysis,
with the Nubit Prover network used for transaction verification.

4.4. State Machine on the Destination Chain

Yala Finance’s solution relies on contracts on the destination
chain for state transfer and asset mapping. In asset mapping,
BTC assets are locked in UTXOs on the main chain and cross-
chain mapped through multisignatures. Users receive mapped
assets on the destination chain. Yala Finance implements as-
set management contracts on the destination chain for asset is-
suance, collateral lending, and other complex DeFi logic. Liqui-
dation requires Keepers’ participation, but the state transition oc-
curs directly on the destination chain, where Keepers can choose
to acquire the collateral UTXO or mapped assets. The mapped
asset is burned after the locked UTXO on the main chain is un-
locked.

5. Automatic stabilizer and the Yala Foundation

In its initial phase, the Yala Foundation operates as a central-
ized entity under community oversight, ensuring $YU’s sta-
bility through BTC-backed lending protocols. The Foundation
manages lending parameters, interest rates, and emergency re-
sponses. The protocol’s BTC assets are secured through Bitcoin
vaults using threshold signatures, with the BTC Stability Re-
serve Pool managed by Yala token holders who vote on system
parameters and upgrades. The Foundation issues initial $YALA
and $YU tokens through verified BTC-collateralized positions.
While the Foundation cannot alter the underlying BTC collat-
eral positions, it implements an Automatic Stabilizer system to
manage the $YALA and $YU supply dynamics, automating the
minting and burning process based on market conditions.

$YU Reserve Pool

$YU Module

{ Borrower } [Loan Module]

Deploy

Y

|

Transfer Collateral

h

extraMint Withdraw $YU

Transfer $YU Deposit $YU

weeeee]

Fig. 3. Automatic stabilizer on credit process

$Yala Reserve Pool

[Keeper] [Loan Module] [$Yala Module }
i i i
_____________ S A
| | | | H
| | | 1 H
i \ Gossip Flapper8Kick) ! !
i | i
i ™ "
| Tend H
: ;
h '
i 1
| '
H Deal H
| '
h '
i '
: ; H
E Transfer $Yala Y Deposit o» E
| H
i '
1 Withdraw $YU H
| < ‘
H '
i '
i '
H '
i 1
i T o Surplus Auctions i
| L '

Gossip Flopper&Kick

Dand

Deal

Withdraw $Yala | Withdraw

»
A

i '
1 1
' '
' '
1 1
' '
' '
1 1
' '
' '
1 1
' '
I '
1 1
' '
I '
1 1
' '
I '
!]
' '
i Transfer §¥U i
! — — 1

'
1 I
!]
' '
1 I
' I
' '
1 1
' '
' '
1 1
' '
' '
1 1
' '
' '
! T Debt Auctions |
I '
' |

Fig. 4. Automatic stabilizer on system stabilization process

5.1. Credit process

The Yala Foundation will mint all $YU to the $YU Reserve Pool
until reaching its max supply, then transition to the Stabilized
Lending phase. In this phase, new $YU isn’t directly minted; in-
stead, an "extraMint" method simulates minting by transferring

7 of 14

$YU from the Reserve Pool to borrowers. Repayments are re-
deposited into the Reserve Pool, mimicking the original minting
phase. The Automatic Stabilizer automates withdrawals and de-
posits related to the Reserve Pool, managing the $YU Module
throughout.

5.2. System stabilization process

The Automatic Stabilizer manages $YU’s price stability through
a dual-auction system during the BTC lending cycle. The pro-
cess handles minting and burning operations, focusing on main-
taining stability during liquidation events. Surplus value is gen-
erated from the Loan Module’s management fees (interest rates).
When loans are repaid, excess interest becomes surplus tied to
specific module addresses. Keepers participate in auctions using
$Yala tokens, with winning bids securing the surplus. The $Yala
tokens received through these auctions are added to the $Yala
Reserve Pool, reducing the governance token supply to maintain
economic equilibrium.

During rapid collateral price declines, bidders may pay sig-
nificantly less than their maximum willingness, resulting in the
liquidation process generating less $YU than the loan’s value.
This triggers the Debt Auction phase of the Loan Module, which
announces the total debt and its address for bids. Bidders use
$Yala for their offers, with the auction favoring the lowest bidder.
The winning bidder transfers $YU to the Loan Module, secured
by bidding with $Yala. The Automatic Stabilizer then compen-
sates the winner by drawing $Yala from the Reserve Pool, effec-
tively simulating the minting of governance tokens.

6. Liquidation

If a user’s collateral value in the Loan Module drops sharply
and fails to repay interest or add more collateral before reach-
ing the minimum collateralization ratio, Keepers can initiate
liquidation[5, 8]. The process begins when Keepers respond to
liquidation signals from the Insurance Module, specifying the
Module address and liquidation amount. The Module becomes
unlocked after sending BTC to the specified address and receiv-
ing verification from the Prover. The Keeper can then withdraw
the collateral. The liquidation fee is predetermined by the Yala
Foundation in the Insurance contract, allowing Keepers to pur-
chase collateral at a discount for arbitrage opportunities.

Suppose the collateral value associated with a user’s Loan
Module experiences a significant decline, and the user fails to
settle interest payments or bolster collateral funds promptly, trig-
gering a drop below the stipulated minimum pledge rate. In that
case, Keepers can submit a liquidation request to the Loan Mod-
ule [5, 8]. Keepers must adhere to the liquidation amount broad-
casted by the Insurance Module and the corresponding Mod-
ule’s address. They can then execute a direct transfer to this ad-
dress. Upon consensus agreement from the Prover, the Module
undergoes unlocking, transforming into a White Module. Subse-
quently, the Keeper initiates a withdrawal request, securing the
escalated collateral. The clearing fee, configured within the In-
surance contract script by the Yala Foundation, presents an op-
portunity for Keepers to acquire collateral at a discounted rate,
capitalizing on arbitrage gains.

We consider multiple liquidation execution methods, some
of which have similar implementation methods. One is to com-
plete it directly on the BTC main chain, where the collateral is
locked in a UTXO. This is a multi-signature management mod-
ule with predefined unlocking conditions from the start. The sec-
ond approach uses atomic swaps, where the counterparty for the

8of 14

Gossip Liquidation

Tender Loan Module

Transfer

Withdraw

Fig. 5. Liquidation

collateral user is set as an open-source contract. The counter-
party contract can be on the BTC main chain, another chain, or
Layer 2. The third approach achieves BTC asset cross-chain in-
teroperability through decentralized custody; we must complete
decentralized multi-signature managed asset custody on the BTC
main chain and interact with financial operations with the target
chain.

In the first approach, the UTXO unlocking condition can be
signed by an oracle, making the execution process of the module
similar to Discreet Log Contracts (DLCs). The second approach
relies on atomic swaps and uses Hash Time-Locked Contracts
(HTLC) to facilitate trustless digital asset exchanges. Utilizing
HTLC to control the assets locked by both parties, we manage
the complex financial transaction process, which may also de-
pend on oracles. Atomic swaps support two types of transac-
tions: cross-chain exchanges between two different cryptocur-
rencies on two separate blockchains and on-chain (including
Layer 2) exchanges of other digital assets on the main chain.
The third approach involves mapping BTC assets onto another
blockchain to complete operations, ensuring that custodians do
not act maliciously and that user assets remain secure.

7. Custodial mapping of BTC assets

The custodial mapping of BTC assets is a cross-chain mech-
anism that typically involves locking BTC in UTXOs on the
Bitcoin main chain and mapping those assets to other chains
through technologies such as multi-signature. When users meet
specific conditions (such as loan repayment), the UTXO is un-
locked, and the corresponding mapped assets are released or de-
stroyed. This process often requires the collaboration of oracles
and cross-chain contracts to ensure the secure and accurate trans-
fer of assets. This allows BTC assets to be used on other chains
while maintaining their security on the main chain.

The cross-chain process can be divided into the issuance
and destruction of mapped assets. Assets to be moved cross-
chain are securely locked on the source chain, and equivalent
mapped assets are issued on the target chain—this represents
the cross-chain movement and issuance of mapped assets. De-
stroying the mapped assets on the target chain and unlocking
the assets on the source chain is bringing the assets back cross-
chain. In these processes, the technical goal is to ensure the se-
cure atomicity of the lock-issue and destroy-unlock actions. Al-
most all BTC cross-chain solutions use MPC (multi-party com-
putation), involving multiple institutions and community partic-
ipants as trusted parties for multi-signature authentication. How-
ever, cross-chain bridge signatories are few, leading to issues of
excessive centralization and vulnerability to attacks.

Yala Labs: Yala: A Bitcoin-Based Asset Protocol

In Yala Finance’s implementation of the BTC asset cross-
chain solution, there is a greater focus on the security of user
assets and the decentralization of asset custody. We will also im-
plement more complex mapping operations, directly integrating
collateralized lending and stablecoin systems within the accep-
tance contracts on the target chain.

7.1. Key Management

Key management refers to managing and protecting the entire
process of generating, storing, using, and destroying crypto-
graphic keys. It ensures the security of encrypted assets and pre-
vents unauthorized access or tampering. By employing methods
such as distributed management, multi-signatures, and Hardware
Security Modules (HSMs), key management can reduce the risks
of asset leakage and loss, especially during cross-chain opera-
tions and asset custody. It also ensures the secure transfer and
verification of assets across different platforms and chains.

Key management for BTC asset custody and cross-chain op-
erations is crucial for ensuring asset custody security and cross-
chain mapping safety. Key management ensures the security of
assets and prevents unauthorized access. Through distributed
management and multi-signature mechanisms, key management
effectively mitigates risks, such as single points of failure or ma-
licious attacks. Additionally, its role in cross-chain asset map-
ping and verification cannot be overlooked. By using external
verification mechanisms such as oracles, key management en-
sures the transparency and security of cross-chain operations,
safeguarding the secure transfer and management of user assets
across different chains.

The security strategies for key management include the fol-
lowing aspects:

1. Multi-signature: Verifying transactions through a combina-
tion of multiple keys to prevent the risk of a single key being
compromised or altered.

2. Distributed Storage: Avoiding the storage of all keys in a
single location, thereby reducing the risk of attacks.

3. Hardware Security Module (HSM): Using dedicated hard-
ware devices to generate and store keys, enhancing their pro-
tection.

4. Key Rotation and Destruction: Regularly updating keys
and ensuring that expired keys are destroyed to prevent over-
reliance on a single key.

When used for key management, the MPC (Multi-Party
Computation) protocol enhances key security by splitting the key
into multiple shares and distributing them among different par-
ties. This ensures that no single participant can obtain the com-
plete information of the key, thus mitigating the risks of single
points of failure and singular key leakage and ensuring the secu-
rity of the key during use.

Additionally, the MPC protocol supports dynamic key up-
dates and recovery, providing flexible security guarantees when
collaborating with multiple parties. However, implementing
MPC protocols typically requires higher computational costs and
network bandwidth.

A reasonable key management approach is necessary to es-
tablish a layered defense for solutions such as locked custody
and automated asset management tools. Cubist® has identified
the flaws in existing key management solutions and designed a
more effective implementation.

3 https://cubist.dev/

In an MPC (Multi-Party Computation) protocol, multiple
parties connected over a network perform joint computations
without disclosing their private inputs, facilitated by complex
cryptographic techniques. However, the network infrastructure
and the associated cryptography can be costly, which is essen-
tial for proper protocol implementation—particularly for those
prioritizing security over shortcuts. Consequently, MPC wallets
require substantial cryptographic resources and generate signifi-
cant network traffic, leading many legitimate implementations to
take approximately ten seconds to produce a signature.

7.2. Existing Solution Reference

From a systematic perspective, asset custody services provided
by alliances consisting of multiple independent custodians ex-
hibit better robustness and resilience against single points of fail-
ure, thereby achieving higher security. Asset custody solutions
frequently encounter incidents of funds being stolen or attacked,
making it difficult for clients to distinguish whether the claimed
losses are due to hacking or internal fraud and misuse.

There are various asset custody mapping solutions on Bit-
coin, primarily including:

— Centralized: Custody is managed by a trusted central insti-
tution, fully endorsed by that institution, such as H-Tokens,
BTCx, and imBTC.

— Consortium: Multi-signature accounts controlled by a con-
sortium of members, backed by the reputation of consortium
members, such as WBTC, cBTC, and XBTC.

— Decentralized (with deposits/collateral): Custody pro-
vided by permissionless custodians secured by over-
collateralized cryptographic assets (e.g., tBTC and renBTC).

Yala’s custodial mapping solution draws inspiration from
the MakerDAO[7] and WBTC models, similar to the ap-
proach of tBTC[10]. tBTC is a multi-signature address, over-
collateralized, and randomly combined automated protocol. The
signer group consists of multiple signers, making them important
participants in the protocol. The signer group provides a BTC
custody address for users to lock BTC assets. The selection of
the signer group is facilitated by a random seed supplied by a
random network, and signers need to provide over-collateralized
assets to participate in the asset mapping process.

The overall process requires multiple rounds of participation
from users and signers, accompanied by numerous restrictions,
such as minimum amounts and waiting periods. Additionally,
issues related to asset price oracles, asset utilization, and various
frictions are involved due to over-collateralization.

TBTC and renBTC offer the most reliable security, as adver-
saries are unlikely to initiate attacks that would not be profitable.
However, these solutions also have significant drawbacks.

The first drawback is that over-collateralization leads to in-
efficiency: tBTC requires custodians to provide collateral worth
150% of the client’s asset value, while renBTC requires 300%
collateral.

The second drawback is that these solutions do not support
homogeneous collateral as custodial assets.

7.3. Decentralized Asset Custody

Asset custody requires consideration of decentralization, secu-
rity, and efficiency. Each custodian participating in asset custody
must provide a fund as a margin, which is kept with the assets un-
der custody and will be used to reimburse any losses incurred by

9 of 14

https://cubist.dev/

a misbehaving custodian. This allows for sharing risk and goes
beyond having a single point of control over the management of
funds. In terms of security, the system remains secure as long as
the adversary does not steal more assets than the margin paid,
i.e., it is preferable that the adversary only withdraws the margin
of the custodian under his control instead of launching an attack.
We refer to the scheme of Zhaohua Chen and Guang Yang[3].
This scheme uses a portfolio design to decentralize custodians
and assets into many small custodian groups. Each group has
full control over its assets, which reduces operational costs and
increases activity (a single surviving group can process transac-
tions). The core processing structure is:

Definition 1 (Decentralized Asset Custody scheme). A cus-
tody scheme (S, A,) consists of the following three parts:

- § ={1,2,---,n} denotes the set of all custodians (or simply
nodes);

- A denotes a family of m k-subsets of S, such that each ele-
ment in A (i.e. a k-subset of §') represents a custodian group

under the given custody scheme;
- p € [1/2,1) denotes a universal authentication threshold for

all custodian groups, i.e., the asset controlled by that group
can be settled arbitrarily with approval of strictly above uk
group members.

In decentralized asset custody schemes, random sampling
can effectively reduce the number of custodian groups, thereby
improving system manageability. In the original design, depend-
ing on whether a symmetric or polynomial approach is used,
the number of custodian groups may become excessively large,
making the system costly and difficult to operate. Random sam-
pling selects only a subset of custodian groups to act as repre-
sentatives, significantly simplifying the structure.

Importantly, this approach does not significantly compro-
mise the system’s security while reducing the number of cus-
todian groups. Theoretical analyses demonstrate that the opti-
mized scheme retains a high probability of security and estab-
lishes a lower bound on its efficiency factor. This indicates that
random sampling achieves a practical balance between feasibil-
ity and security, providing a more efficient implementation path
for decentralized custody mechanisms.

8. Takaful

Takaful operates by pooling contributions from members into a
fund, with premiums financing mutual assistance for losses. This
fund, along with all related activities such as investments and
profit distribution, is managed by an operator. In cases where the
Takaful Insurance Fund falls short of covering claims, operators
use qard hasan (a benevolent loan) from company shareholders
to fill the gap. Though not required, future surpluses are first
allocated to repay these loans, benefiting the shareholders.

Surpluses remain after claims and expenses are reimbursed
to participants, with the operational cycle and calculations out-
lined by the operator in a scripted contract. The fund employs
a detailed rebate mechanism, with thresholds designed to reg-
ulate fund withdrawals and maintain stability. Commonly, five
thresholds are established: three for the Takaful fund to manage
its levels and two for Qard Hasan to guide loans and repayments.
Loans are made to elevate the fund to a safe level during deficits,
and as the fund grows, reaching certain triggers allows for in-
vestments, distribution of excess to participants and the operator,
and reserve setting for the future. Surplus in the qard hasan be-
yond a defined point triggers dividends to participants, ensuring
equitable benefit distribution.

10 of 14

inds Tnvestment Trigger Surplus Trigger
Point P

Takaful Fund @ T ‘\ { J‘

Loan

Qard Hasan Fund L \\ \\

Dividend Trigge
[[o oo] [P e
Point

Fig. 6. KD modified risk model

Assume that all n participants pay a premium of d to the
Takaful insurance fund. The R, denotes the reserve after all pay-
ments have been made in the period starting at time t. The net
return is the total income minus the total expenses for a given
period. The total amount of benefits withdrawn from the Takaful
Insurance Fund is S. The net benefit is the total revenue minus
the total expenses for a given period, i.e., nd — S. h is the sur-
plus trigger point, and any amount exceeding the surplus trigger
point at the point in the calculation cycle is the fund’s surplus,
which should be distributed to the participants, the Takaful op-
erator, and the shareholders. Takaful fund reserves satisfy the
recurrence relation

R =hAR_i+nd—S), (1)

8.1. Insurance model in Yala

Yala’s insurance model merges the profit-sharing and agent mod-
els, drawing inspiration from Takaful. In the profit-sharing ap-
proach, the operator allocates the Takaful fund’s surplus pro-
ceeds once they surpass a predetermined surplus trigger. Con-
versely, in the agent model, the operator earns proceeds for fund
management, creating a balanced structure that rewards both
fund stewardship and communal surplus.

In the Yala insurance model, insurers oversee the Takaful
Module and Qard Hasan Module. The Takaful Module, central
to the system, manages the insurance pool and the lending script
contract. Here, policyholders, termed Participants, choose their
insurance module and initiate a script contract linked to the Taka-
ful Module. This setup, pre-approved by Insurers, automatically
entitles Participants to payouts, triggering a process where, upon
permission, the Prover consensus transitions the module from
Black to White, enabling Insurers to access the funds for claims.

The Insurance Pool’s resources are allocated for claims and
Insurers’ fees, embodying shared risk among Participants. In-
surers can invest to generate additional revenue once the pool’s
funds surpass the investment threshold. Beyond a set surplus
trigger, this excess income is shared between Participants and
Insurers, with any leftover reserves earmarked for future insur-
ance periods.

The Qard Hasan Module is triggered when a deficiency oc-
curs, and the Insurance Pool reaches the Minimum funding level.
The funds in the Qard Hasan Pool are used to cover the Insurance
Pool’s losses until its funding is restored to the Loan Maximum
Point. That is, when (R,_; + nd)(1 — p") < §, the Qard Hasan
loan Q = S — (R;—1 + nd)(1 — p") will be offered.where p" is the
agency fee rate and p™ is the profit sharing rate. If the body of
Insurance Pool funds exceeds the surplus trigger at stage t stage,
the reserve satisfies

Ri=h A[((R-1 + nd)(1 = p") = §) (1 = p™)], @

Yala Labs: Yala: A Bitcoin-Based Asset Protocol

Participants

Insurance module

"
-

Insure

Insurers|

¥
Takaful Module

=,

Last term's Reserve ¥ Insurance pool

~-Agency Fee --------- | Qard Hasan Modula

Shareholders
fInsurers

- »{Qard Hasan pool | -|---

Claims
»[Participants' Share
,
> In'_vestment > Retention —
income
h

Profit Sharing

Insurers' Share

Qard hasan loan
in case of
deficiency

Fig. 7. Insurance model architecture

Each participant receives benefits

(%

If we set the profit threshold point & = 0, the earnings for each
participant in the model simplify to:

(Bt sa)a-pm-2]a-m @

If the body of insurance pool funds does not reach the surplus
trigger at stage t, no profit sharing will be calculated for the in-
surers, which will satisfy the reserve.
y
+

R, = |:(Rt_1 +nd _
1-p»

Since Yala Finance is a high-risk trading scenario, there could
be a large demand for short-term insurance. Insurers could rea-
sonably increase insurance rates for short-term traders. Contract
parameters would need to be changed at any time in conjunc-
tion with the market price provided by the prognosticator, and
Insurers would have the right to reject high-risk trades. The Yala
insurance model could also become a Defi application. The Yala
insurance model could also be a standalone derivative in the BTC
ecosystem, where policyholders and shareholders could provide
capital for long-term gains.

+d)(1 ~p") - %)(1 -p") - Z] 3)

+

Gtz

&)

8.2. Key external actors
8.2.1. Keepers

Keepers, often automated and independent entities, are moti-
vated by arbitrage to enhance liquidity in decentralized systems.

In Yala Finance, they help stabilize $YU’s price by selling it
when above the target and buying when below. During liquida-
tions in Yala’s Vault module, Keepers engage in auctions for sur-
plus, debt, and collateral, contributing to the protocol’s market
efficiency.

8.2.2. Oracles

Yala Finance requires real-time information about the market
prices of collateral assets in the Yala Finance Vault to deter-
mine when to trigger liquidation. Oracles provides data services
for USD prices, collateral prices, and $YU prices to both the
Yala Foundation, insurers, and the liquidation module [1, 2].
The Yala Foundation oversees the Oracle and OSM Modules,
which source price inputs from the BTC Layer 2 Oracle node.
This node fetches off-chain data, reformats it, and supplies it to
the Oracle Module. To safeguard against attackers controlling
prophecy machines, the OSM (Office of the Secretary) interme-
diates, receiving prices indirectly to enhance security. It intro-
duces a 30-minute delay before releasing prices to the protocol,
allowing time for emergency actions if needed. The Yala Foun-
dation decides on this delay and emergency protocols.

Given the limited collateral types in early Yala Finance, the
Oracle system doesn’t require extensive price data. It operates
on a publish-subscribe model, with the Oracle Module collect-
ing and broadcasting price data at set intervals after OSM pro-
cessing. Each node in the system runs a daemon to keep its price
data current.

11 of 14

Indexer ‘ Indexer Indexer
API E
[y
Query Ap1 | _RElUM
Response
Retum Response 4 Returm Response
Cluery API
Oracle Node2
£
s
3
5
Listening Oracle Model Oracle Node3
for
avents
BTC-Layer2
Yala Foundation
YYYy
Oracle
F--1 OSM
Module
£)
& Publish
o
=
(=] ¥
=
-]
2]
H Subscribe
Loan Module Autormatic Insurers
Stabilizer

Fig. 8. Oracle service

8.2.3. Insurers

Given the high volatility unique to Yala Finance, collateralized
borrowers require insurance services. However, to preserve $YU
stability, the Yala Foundation doesn’t directly provide these ser-
vices or assume borrower risks. Instead, when starting a Loan
Module, borrowers can activate an Insure Module tailored to that
specific module.

12 of 14

Insurers are insurance operators responsible for maintaining
the Qard Hasan fund pool, setting various parameters for insur-
ance contracts, and publishing them on the insurance platform.
Before initiating the Insure Module, borrowers need to select an
insurance contract on the insurance platform and then direct the
source to the script code segment to complete the publication of
the Insure Module.

9. Interoperability
9.1. Secure state channels between modules

In Yala’s architectural design, state changes operate inde-
pendently, creating state channels running within UTXOs on
BTC. These state channels provide security, with the occur-
ring changes being off-chain, thus not burdening the BTC main
chain’s load. The execution function for state changes is stored in
MAST conditional circuits scripts in the Witness on BTC. It sim-
ply evaluates if the conditions for state change are met without
conducting substantial complex calculations, ensuring the con-
tract’s security, simplicity, and transparency.

Analyzing the size and content of BTC blocks, according
to information provided by bitaps, although the block weight of
BTC blocks is limited to 4MB, the average size of the block
weight is only 1724885 bytes (Data on March 10, 2024) when
the Base size is close to 1MB. Therefore, at least 2MB of space
can be fully provided to the witness, with an average of approxi-
mately 3500 transactions per block. We can estimate that if each
transaction uses taproot script-path spend scripts in the witness
to place contracts, each contract averages 600 bytes.

Yala Labs: Yala: A Bitcoin-Based Asset Protocol

BRC-20 Modules’ conditional circuits prescribe the rules
for state changes, necessitating MultiSig Vault. The interaction
process broadly aligns with the MultiSig Vault setup, involving
DeFi participants (excessive collateral borrowers or atomic swap
participants), oracles, and Token Modules. The oracles are de-
centralized and considered trustworthy after processing by the
Oracle Module’s OSM. Token Modules are divided into Stable-
coin Modules implemented by MAST and token contract mod-
ules on other chains. The Stablecoin Module determines the per-
mission conditions allowing users to withdraw $YU, and par-
ticipants also initiate transfers to it during settlement, with the
transfer operation being freely executed without permission. In
atomic swap scenarios, token contract modules on other chains
have Turing completeness and the contract security of differ-
ent chains. Token Modules are automatically executed under the
consensus of Provers and can be considered trustworthy. We be-
lieve such state channels are trustworthy under conditions where
only the single transaction participant is untrustworthy.

When DeFi participants initiate the transaction module, its
source will be the DeFi transaction script published by the Yala
community. The transaction process forms a 2-of-3 multisig
state channel between the participant, Oracle Module, and Token
Module. The unlocking conditions are two: one is controlled by
a time lock, and if participants do not return the borrowed as-
sets within the specified time, the assets will be directly paid to
the Token Module. MAST conditions control the other, setting
the wager on whether participants can repay the loan. In the bor-
rowing scenario, currently, only over-collateralized loans with
pre-set interest values can be implemented, meaning the interest
and loan duration are predefined from the start, not variable over
time, due to the script size limitations currently supported by the
Witness.

9.2. Atomic swap

We can readily observe the limitations of operating assets on the
BTC main chain. Therefore, we can expand BTC by enhanc-
ing its interoperability to facilitate more complex DeFi transac-
tions with BTC assets. Participants need to initiate an atomic
swap module on the BTC main chain, pledge a certain amount
of BTC or other assets, and then obtain an equivalent amount of
wrapped tokens (yBTC) on another blockchain to engage in the
DeFi ecosystem of different chains.

We refer to the atomic swap protocol proposed by TierNolan
on Bitcointalk*:

1. Party ‘A’ generates some random data, x (the secret).

2. Party ‘A’ generates Tx1 (the payment) containing an output
with the chain-trade script in it. See below for this script and
a discussion of it. It allows coin release either by signing
with the two keys (key ‘A’ and key ‘B’) or with (secret ’x’,
key ‘B’). This transaction is not broadcast. The chain release
script contains hashes, not the actual secrets themselves.

3. Party ‘A’ generates Tx2 (the contract), which spends Tx1 and
has an output going back to key ‘A’. It has a lock time in the
future and the input has a sequence number of zero, so it can
be replaced. ‘A’ signs Tx2 and sends it to ‘B’, who also signs
it and sends it back.

4. ‘A’ broadcasts Tx1 and Tx2. Party ‘B’ can now see the coins
but cannot spend them because it does not have an output
going to him, and the transaction is not finalized anyway.

4 Bitcointalk.org - Atomic Swap Protocol by TierNolan

5. ‘B’ performs the same scheme in reverse on the alternative
chain. The lock time for ‘B’ should be much smaller than for
‘A’. Both sides of the trade are now pending but incomplete.

6. Since ‘A’ knows the secret, ‘A’ can claim his coins imme-
diately. However, ‘A’, in the process of claiming his coin,
reveals the secret ’x’ to ‘B’, who then uses it to finish the
other side of the trade with (’x’, key ‘B’).

The protocol process begins with user A initiating an atomic
swap contract white module targeted at a specific chain. The ran-
domly generated number x and the lock time #; are written into
the unlock script of the white module. There is a contract on the
target chain that interacts with the user, defined as role B, which
executes automatically. The unlock condition for the white mod-
ule is [if (x for H(x) known and signed by B) or (signed by A
& B),] if not successfully signed and unlocked, a refund trans-
action to the user will be initiated after time ;. Then, user A
initiates a transfer transaction to the white module, transferring
a certain amount of BTC. The Prover captures the white module,
triggering the execution of the atomic swap contract on the tar-
get chain and initiating an equivalent yBTC transfer transaction
to the user’s account on that chain with the unlock condition. [if
(x for H(x) known and signed by A) or (signed by A & B),] If not
successfully unlocked within time 7,, the transaction will be can-
celed, where #, < ;. User A signs the transaction on the target
chain and uses and reveals the secret x, acquiring yBTC on the
target chain. Contract B captures the secret x and simultaneously
unlocks the white module. The final unlock of the white module
requires consensus through the Prover; at this time, the owner-
ship of the white module belongs to the Prover network. The
BTC assets pledged within the white module will only be used
if a user from another chain exchanges yBTC back to BTC. The
Oracle monitors the entire atomic swap process, and the contract
on the other chain will decide whether to allow atomic swaps
based on whether the number of pledged BTC counted by the
Oracle is equal to the number of issued yBTC.

10. Future

While Yala has considered implementing native DeFi solutions
for BTC assets, several challenges remain in ensuring interoper-
ability between BTC and other blockchain networks. The initial
approach of directly implementing atomic swaps and locks to fa-
cilitate two-way communication between BTC and other assets
faces issues such as the lack of guaranteed counterparties, long
cross-chain latency, value-blindness, and the risk of fraud.

The common approach adopted by most cross-chain bridges,
involving multiple signatures from trusted organizations, could
be considered as a potential solution. However, this raises signif-
icant security concerns, as it is well-known that many DeFi and
cross-chain bridge projects have been subject to insider theft,
where the custodians of the managed assets were responsible
for the theft of funds. Decentralized asset management requires
higher security in cross-chain asset mapping from BTC to other
blockchains.

Yala needs to address the problem of how to tolerate un-
trustworthy multi-signatory parties in decentralized asset man-
agement, as well as how to increase the speed of cross-chain
transactions. One potential solution could be to decouple trans-
action confirmation from transaction execution and improve the
efficiency of multisignatures, which could significantly increase
the speed of cross-chain transactions. Additionally, it might be
possible to prevent malicious behavior by ensuring that the costs

13 of 14

https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949

outweigh the benefits of an untrustworthy multi-signatory at-
tacking the managed assets.

Beyond these technical challenges, Yala envisions becoming
a cornerstone for Bitcoin’s evolution into a programmable asset
platform. This transformation will enable several key develop-
ments:

1. Institutional Adoption: Development of standardized Bit-
coin DeFi infrastructure aligned with traditional finance re-
quirements, professional risk management frameworks, and
enterprise-grade security solutions with modular key man-
agement.

2. Cross-chain Innovation: Implement next-generation
atomic swap mechanisms with enhanced efficiency, novel
state verification methods, and improved cross-chain
composability while maintaining Bitcoin’s security model.

3. Bitcoin DeFi Standards: Establishment of industry ref-
erence implementations for Bitcoin-native DeFi protocols,
open specifications for secure Bitcoin state transitions, and
community-driven protocol improvements fostering ecosys-
tem growth.

These developments align with Yala’s core mission of un-
locking Bitcoin’s full potential while maintaining its fundamen-
tal security and decentralization principles. Overall, Yala recog-
nizes the need to develop robust and secure cross-chain inter-
operability solutions to enable the seamless integration of BTC
assets with other blockchain ecosystems while ensuring a high
level of decentralization and trust in the asset management pro-
cess.

11. Conclusions

Yala Protocol is dedicated to building a comprehensive DeFi and
programmability infrastructure based on BTC assets. We have
designed a native asset interaction protocol based on the BTC
mainchain and established robust interoperability mechanisms
from BTC to other blockchains. The protocol’s architecture con-
sists of several innovative components:

— The native operability of BTC assets is implemented based
on Modular UTXO architecture, leveraging overcollateral-
ized stabilization BTC assets to provide a full suite of ser-
vices, including the Vaults module, liquidation algorithm,
and automatic stabilizer.

— To address the unique challenges of BTC’s block time and
asset volatility, we introduced an insurance derivatives mod-
ule that serves dual purposes: reducing risks for collateral-
ized lending users while enabling profitable interest-bearing
opportunities through the insurance mechanism.

— At the interoperability level, we implemented atomic swaps
to achieve secure 2-way pegging between BTC and other
blockchains while leveraging Turing-complete smart con-
tracts on external chains for complex operational logic.

These innovations position Yala as a pioneer in Bitcoin’s
DeFi ecosystem, offering a secure, efficient, and scalable infras-
tructure that maintains Bitcoin’s fundamental principles while
expanding its utility. By combining Bitcoin’s unmatched secu-
rity with advanced DeFi capabilities, Yala creates a foundation
for the next generation of Bitcoin-based financial applications.

14 of 14

References

[1] Ar-Breiki, H., Reaman, M. H. U., Saran, K., anp
Sverivovic, D. Trustworthy blockchain oracles: review,
comparison, and open research challenges. IEEE access
8 (2020), 85675-85685.

[2] CaLparerLi, G. Overview of blockchain oracle research.
Future Internet 14, 6 (2022), 175.

[3] CHEN, Z., AND YANG, G. Decentralized asset custody scheme
with security against rational adversary, 2021.

[4] Hemwman, E. Signing a bitcoin transaction with lamport sig-
natures. Bitcoin Development Mailing List, April 2024.
Accessed from Bitcoin Development Mailing List.

[5] Kokorin, I., DE Graar, T., aNp HaenTiENS, M. The failed
hopes of disintermediation: Crypto-custodian insolvency,
legal risks and howto avoid them. Singapore Journal of
Legal Studies (2020), 526-563.

[6] L, X., J1, S., Wang, X., Liu, L., anp ReN, Y. Blockchain
data availability scheme with strong data privacy protec-
tion. Information 14, 2 (2023), 88.

[7] MakerDAO. The maker protocol: Makerdao’s multi-
collateral dai (mcd) system, 2024. Accessed: 2024-11-19.

[8] Perez, D., WERNER, S. M., Xu, J., anp LivsHirs, B. Liquida-
tions: Defi on a knife-edge. In Financial Cryptography and
Data Security: 25th International Conference, FC 2021,
Virtual Event, March 1-5, 2021, Revised Selected Papers,
Part 11 25 (2021), Springer, pp. 457-476.

[9] PoeLstrA, A. Script state from lamport signatures. Block-
stream Research (July 2024).

[10] TBTC. A decentralized redeemable btc-backed erc-20 to-
ken, 2024. Accessed: 2024-11-19.

[11] Team, E. Eigenlayer: The restaking collective. URL:
https:jidocs. eigenlayer. xyzjoverview/whitepaper (2023).

	Introduction
	Background
	Challenges for running DeFi on Bitcoin
	Existing solutions
	Native operability and interoperability on Bitcoin
	Bitcoin's State Transfer

	Yala architecture
	Execution processing
	Application layer
	Data availability layer
	Settlement layer

	BTC Assets State Machine Model
	State Types
	Implementation of Complex States
	State Machine on Bitcoin Mainnet
	State Machine on the Destination Chain

	Automatic stabilizer and the Yala Foundation
	Credit process
	System stabilization process

	Liquidation
	Custodial mapping of BTC assets
	Key Management
	Existing Solution Reference
	Decentralized Asset Custody

	Takaful
	Insurance model in Yala
	Key external actors
	Keepers
	Oracles
	Insurers

	Interoperability
	Secure state channels between modules
	Atomic swap

	Future
	Conclusions

